1
|
Brough HA, Cheneler D, Hardy JG. Progress in Multiscale Modeling of Silk Materials. Biomacromolecules 2024; 25:6987-7014. [PMID: 39438248 PMCID: PMC11558682 DOI: 10.1021/acs.biomac.4c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
As a result of their hierarchical structure and biological processing, silk fibers rank among nature's most remarkable materials. The biocompatibility of silk-based materials and the exceptional mechanical properties of certain fibers has inspired the use of silk in numerous technical and medical applications. In recent years, computational modeling has clarified the relationship between the molecular architecture and emergent properties of silk fibers and has demonstrated predictive power in studies on novel biomaterials. Here, we review advances in modeling the structure and properties of natural and synthetic silk-based materials, from early structural studies of silkworm cocoon fibers to cutting-edge atomistic simulations of spider silk nanofibrils and the recent use of machine learning models. We explore applications of modeling across length scales: from quantum mechanical studies on model peptides, to atomistic and coarse-grained molecular dynamics simulations of silk proteins, to finite element analysis of spider webs. As computational power and algorithmic efficiency continue to advance, we expect multiscale modeling to become an indispensable tool for understanding nature's most impressive fibers and developing bioinspired functional materials.
Collapse
Affiliation(s)
- Harry
D. A. Brough
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David Cheneler
- School
of Engineering, Lancaster University, Lancaster LA1 4YW, United Kingdom
- Materials
Science Lancaster, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| | - John G. Hardy
- Department
of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
- Materials
Science Lancaster, Lancaster University, Lancaster, LA1 4YW, United Kingdom
| |
Collapse
|
2
|
Eliaz D, Paul S, Benyamin D, Cernescu A, Cohen SR, Rosenhek-Goldian I, Brookstein O, Miali ME, Solomonov A, Greenblatt M, Levy Y, Raviv U, Barth A, Shimanovich U. Micro and nano-scale compartments guide the structural transition of silk protein monomers into silk fibers. Nat Commun 2022; 13:7856. [PMID: 36543800 PMCID: PMC9772184 DOI: 10.1038/s41467-022-35505-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Silk is a unique, remarkably strong biomaterial made of simple protein building blocks. To date, no synthetic method has come close to reproducing the properties of natural silk, due to the complexity and insufficient understanding of the mechanism of the silk fiber formation. Here, we use a combination of bulk analytical techniques and nanoscale analytical methods, including nano-infrared spectroscopy coupled with atomic force microscopy, to probe the structural characteristics directly, transitions, and evolution of the associated mechanical properties of silk protein species corresponding to the supramolecular phase states inside the silkworm's silk gland. We found that the key step in silk-fiber production is the formation of nanoscale compartments that guide the structural transition of proteins from their native fold into crystalline β-sheets. Remarkably, this process is reversible. Such reversibility enables the remodeling of the final mechanical characteristics of silk materials. These results open a new route for tailoring silk processing for a wide range of new material formats by controlling the structural transitions and self-assembly of the silk protein's supramolecular phases.
Collapse
Affiliation(s)
- D. Eliaz
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - S. Paul
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - D. Benyamin
- grid.9619.70000 0004 1937 0538Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401 Israel
| | - A. Cernescu
- grid.431971.9Neaspec—Attocube Systems AG, Eglfinger Weg 2, Haar, 85540 Munich Germany
| | - S. R. Cohen
- grid.13992.300000 0004 0604 7563Department of Chemical Research Support, Weizmann Institute of Science, 7610001 Re-hovot, Israel
| | - I. Rosenhek-Goldian
- grid.13992.300000 0004 0604 7563Department of Chemical Research Support, Weizmann Institute of Science, 7610001 Re-hovot, Israel
| | - O. Brookstein
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - M. E. Miali
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - A. Solomonov
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - M. Greenblatt
- grid.13992.300000 0004 0604 7563Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Y. Levy
- grid.13992.300000 0004 0604 7563Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - U. Raviv
- grid.9619.70000 0004 1937 0538Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 9190401 Israel
| | - A. Barth
- grid.10548.380000 0004 1936 9377Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden
| | - U. Shimanovich
- grid.13992.300000 0004 0604 7563Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
3
|
Zhang J, Huang C, Chen Y, Wang H, Gong Z, Chen W, Ge H, Hu X, Zhang X. Polyvinyl alcohol: a high-resolution hydrogel resist for humidity-sensitive micro-/nanostructure. NANOTECHNOLOGY 2020; 31:425303. [PMID: 32554892 DOI: 10.1088/1361-6528/ab9da7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A high-resolution nanopatterning technique is desirable with the present rapid development of hydrogel nanodevices. Here, we demonstrate that polyvinyl alcohol (PVA), a popular polymeric hydrogel, can function as the negative-tone resist for electron beam lithography (EBL) with a resolution capability as narrow as 50 nm half-pitch. Furthermore, the hydrophilic groups of PVA are stable after EBL exposure, and thus the pattern still shows rapid responsivity to humidity change. An aqueous nanopatterning process including dissolution, spin-coating and development is setup, which is friendly for organic device fabrication free of organic solvent. This high-resolution nanopatterning technique with PVA is helpful for the design and realization of hydrogel-related nanodevices in the future.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Advanced Magnetic Materials, College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|