1
|
Gaviria-Soteras L, Sharma AK, Sanmartín C, Plano D. Recent Insights into Bioactive Dichalcogen Derivatives: From Small Molecules to Complex Materials. Int J Mol Sci 2025; 26:2436. [PMID: 40141080 PMCID: PMC11942125 DOI: 10.3390/ijms26062436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Organodichalcogenides have been explored due to their therapeutic properties. They have been demonstrated to be active against several diseases such as cancer, bacteria, viruses, parasites, or neurological diseases. Among the different classes of dichalcogenides, disulfide derivatives have been widely studied, and many studies cover their therapeutical use. For this reason, this review includes the latest studies of diselenides and ditellurides derivatives with biological applications. With this aim, several bioactive small molecules containing the diselenide or ditelluride bond in their structure have been discussed. Furthermore, it should be highlighted that, in recent years, there has been an increasing interest in the development of nanomaterials for drug delivery due to their therapeutic advantages. In this context, diselenide and ditelluride-containing nanocarriers have emerged as novel approaches. The information compiled in this review includes small molecules and more complex materials containing diselenide or ditelluride bonds in their structure for different therapeutical applications, which could be helpful for the further development of novel drugs for the treatment of different diseases.
Collapse
Affiliation(s)
- Leire Gaviria-Soteras
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
| | - Arun K. Sharma
- Department of Molecular and Precision Medicine, Penn State Cancer Institute, CH72, 500 University Drive, Hershey, PA 17033, USA;
| | - Carmen Sanmartín
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Sciences, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain; (L.G.-S.); (D.P.)
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
2
|
Ferrentino N, Behroozi Kohlan T, Mehrtashfar S, Finne-Wistrand A, Pappalardo D. Dual-Responsive Nanoparticles for Smart Drug Delivery: A NIR Light-Sensitive and Redox-Reactive PEG-PCL-Based System. Biomacromolecules 2024; 25:7660-7673. [PMID: 39526863 DOI: 10.1021/acs.biomac.4c00889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Stimuli-responsive polymeric nanoparticles (NPs) can serve as smart drug delivery systems (DDSs) by triggering drug release upon external or internal stimuli. A dual-responsive DDS made of a triblock poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-SS-PEG-SS-PCL) copolymer, bearing disulfide bonds between PCL and PEG, was synthesized. The copolymer was functionalized with coumarin and sensitive to near-infrared (NIR) light irradiation, while the S-S bonds could be cleaved by GSH (10 mM). Characterization was achieved by nuclear magnetic resonance, size exclusion chromatography, and Fourier transform infrared analyses. Nile Red (NR)-loaded NPs were prepared through self-assembly of the copolymer in water and analyzed by dynamic light scattering and field-emission scanning electron microscopy. The NR release upon ultraviolet (UV)/NIR light irradiation as well as by GSH concentrations was monitored by using fluorescence spectroscopy, while simultaneous exposure to UV/NIR light and intracellular GSH concentration led to faster NR release. AlamarBlue assay showed satisfactory cell viability of the NR-loaded NPs, while their cellular uptake in human dermal fibroblast cells was investigated by fluorescence microscopy and fluorescence emission measurements.
Collapse
Affiliation(s)
- Nancy Ferrentino
- Dipartimento di Scienze e Tecnologie, Università del Sannio, via de Sanctis snc, 82100 Benevento, Italy
| | - Taha Behroozi Kohlan
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Shokoufeh Mehrtashfar
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
- Department of Biotechnology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Daniela Pappalardo
- Dipartimento di Scienze e Tecnologie, Università del Sannio, via de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
3
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
4
|
Wei D, Sun Y, Zhu H, Fu Q. Stimuli-Responsive Polymer-Based Nanosystems for Cancer Theranostics. ACS NANO 2023; 17:23223-23261. [PMID: 38041800 DOI: 10.1021/acsnano.3c06019] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Stimuli-responsive polymers can respond to internal stimuli, such as reactive oxygen species (ROS), glutathione (GSH), and pH, biological stimuli, such as enzymes, and external stimuli, such as lasers and ultrasound, etc., by changing their hydrophobicity/hydrophilicity, degradability, ionizability, etc., and thus have been widely used in biomedical applications. Due to the characteristics of the tumor microenvironment (TME), stimuli-responsive polymers that cater specifically to the TME have been extensively used to prepare smart nanovehicles for the targeted delivery of therapeutic and diagnostic agents to tumor tissues. Compared to conventional drug delivery nanosystems, TME-responsive nanosystems have many advantages, such as high sensitivity, broad applicability among different tumors, functional versatility, and improved biosafety. In recent years, a great deal of research has been devoted to engineering efficient stimuli-responsive polymeric nanosystems, and significant improvement has been made to both cancer diagnosis and therapy. In this review, we summarize some recent research advances involving the use of stimuli-responsive polymer nanocarriers in drug delivery, tumor imaging, therapy, and theranostics. Various chemical stimuli will be described in the context of stimuli-responsive nanosystems. Accordingly, the functional chemical groups responsible for the responsiveness and the strategies to incorporate these groups into the polymer will be discussed in detail. With the research on this topic expending at a fast pace, some innovative concepts, such as sequential and cascade drug release, NIR-II imaging, and multifunctional formulations, have emerged as popular strategies for enhanced performance, which will also be included here with up-to-date illustrations. We hope that this review will offer valuable insights for the selection and optimization of stimuli-responsive polymers to help accelerate their future applications in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dengshuai Wei
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266021, China
| | - Hu Zhu
- Maoming People's Hospital, Guangdong 525000, China
| | - Qinrui Fu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| |
Collapse
|
5
|
Kuo YC, Yen MH, De S, Rajesh R, Tai CK. Optimized lipopolymers with curcumin to enhance AZD5582 and GDC0152 activity and downregulate inhibitors of apoptosis proteins in glioblastoma multiforme. BIOMATERIALS ADVANCES 2023; 154:213639. [PMID: 37793310 DOI: 10.1016/j.bioadv.2023.213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Inhibition to glioblastoma multiforme (GBM) propagation is a critical challenge in clinical practice because binding of inhibitors of apoptosis proteins (IAPs) to caspase prevents cancer cells from death. In this study, folic acid (FA), lactoferrin (Lf) and rabies virus glycoprotein (RVG) were grafted on lipopolymers (LPs) composed of poly(ε-caprolactone) and Compritol 888 ATO to encapsulate AZD5582 (AZD), GDC0152 (GDC) and curcumin (CURC). The standard deviations of initial particle diameter and particle diameter after storage for 30 days were involved in LP composition optimization. The functionalized LPs were used to permeate the blood-brain barrier (BBB) and constrain IAP quantity in GBM cells. Experimental results revealed that an increase in Span 20 (emulsifier) concentration enlarged the size of LPs, and enhanced the entrapment and releasing efficiency of AZD, DGC and CURC. 1H nuclear magnetic resonance spectra showed that the hydrogen bonds between the LPs and drugs supported the sustained release of AZD, DGC and CURC from the LPs. The LPs modified with the three targeting biomolecules facilitated the penetration of AZD, GDC and CURC across the BBB, and could recognize U87MG cells and human brain cancer stem cells. Immunofluorescence staining, flow cytometry and western blot demonstrated that CURC-incorporated LPs enhanced AZD and GDC activity in suppressing cellular IAP 1 (cIAP1) and X-linked IAP (XIAP) levels, and raising caspase-3 level in GBM. Surface FA, Lf and RVG also promoted the ability of the drug-loaded LPs to avoid carcinoma growth. The current FA-, Lf- and RVG-crosslinked LPs carrying AZD, DGC and CURC can be promising in hindering IAP expressions for GBM management.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC; Advanced Institute of Manufacturing with High-tech Innovations, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC.
| | - Meng-Hui Yen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Sourav De
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Rajendiran Rajesh
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| | - Chien-Kuo Tai
- Department of Biomedical Sciences, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC
| |
Collapse
|
6
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
7
|
Yang Y, Sun W. Recent advances in redox-responsive nanoparticles for combined cancer therapy. NANOSCALE ADVANCES 2022; 4:3504-3516. [PMID: 36134355 PMCID: PMC9400520 DOI: 10.1039/d2na00222a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/20/2022] [Indexed: 05/23/2023]
Abstract
The combination of multiple therapeutic modalities has attracted increasing attention as it can achieve better therapeutic effects through different treatment mechanisms. However, traditional small molecule agents are non-specific to the tumor tissue, which leads to off-target toxic effects for healthy tissues. To solve this problem, a number of stimuli-responsive nanoscale drug-delivery systems have been developed. Among these stimuli, a high concentration of reactive oxygen species (ROS) and glutathione (GSH) are characteristic of the tumor microenvironment (TME), which can distinguish it from normal tissue. In this review, we summarize the redox-responsive nanoparticles (NPs) reported in the past three years classified by different functional groups, including GSH-responsive disulfide, ditelluride, and multivalent metal ions, ROS-responsive thioketal, arylboronic ester, aminoacrylate, and bilirubin as well as GSH/ROS dual-responsive diselenide and dicarbonyl thioethers. The prospects and challenges of redox-responsive NPs are also discussed.
Collapse
Affiliation(s)
- Yanjun Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Ningbo 315016 China
| |
Collapse
|
8
|
Cong X, Chen J, Xu R. Recent Progress in Bio-Responsive Drug Delivery Systems for Tumor Therapy. Front Bioeng Biotechnol 2022; 10:916952. [PMID: 35845404 PMCID: PMC9277442 DOI: 10.3389/fbioe.2022.916952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially- and/or temporally-controlled drug release has always been the pursuit of drug delivery systems (DDSs) to achieve the ideal therapeutic effect. The abnormal pathophysiological characteristics of the tumor microenvironment, including acidosis, overexpression of special enzymes, hypoxia, and high levels of ROS, GSH, and ATP, offer the possibility for the design of stimulus-responsive DDSs for controlled drug release to realize more efficient drug delivery and anti-tumor activity. With the help of these stimulus signals, responsive DDSs can realize controlled drug release more precisely within the local tumor site and decrease the injected dose and systemic toxicity. This review first describes the major pathophysiological characteristics of the tumor microenvironment, and highlights the recent cutting-edge advances in DDSs responding to the tumor pathophysiological environment for cancer therapy. Finally, the challenges and future directions of bio-responsive DDSs are discussed.
Collapse
Affiliation(s)
- Xiufeng Cong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Ran Xu,
| |
Collapse
|
9
|
Design of Smart Nanomedicines for Effective Cancer Treatment. Int J Pharm 2022; 621:121791. [PMID: 35525473 DOI: 10.1016/j.ijpharm.2022.121791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a novel field of study that involves the use of nanomaterials to address challenges and issues that are associated with conventional therapeutics for cancer treatment including, but not limited to, low bioavailability, low water-solubility, narrow therapeutic window, nonspecific distribution, and multiple side effects of the drugs. Multiple strategies have been exploited to reduce the nonspecific distribution, and thus the side effect of the active pharmaceutical ingredients (API), including active and passive targeting strategies and externally controllable release of the therapeutic cargo. Site-specific release of the drug prevents it from impacting healthy cells, thereby significantly reducing side effects. API release triggers can be either externally applied, as in ultrasound-mediated activation, or induced by the tumor. To rationally design such nanomedicines, a thorough understanding of the differences between the tumor microenvironment versus that of healthy tissues must be pared with extensive knowledge of stimuli-responsive biomaterials. Herein, we describe the characteristics that differentiate tumor tissues from normal tissues. Then, we introduce smart materials that are commonly used for the development of smart nanomedicines to be triggered by stimuli such as changes in pH, temperature, and enzymatic activity. The most recent advances and their impact on the field of cancer therapy are further discussed.
Collapse
|
10
|
Saha S, Prajapati DG, Ratrey P, Mishra A. Co-delivery nanosystem of Epigallocatechin Gallate and Rutin for anticancer and antibacterial activities. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Zhang P, Chen D, Li L, Sun K. Charge reversal nano-systems for tumor therapy. J Nanobiotechnology 2022; 20:31. [PMID: 35012546 PMCID: PMC8751315 DOI: 10.1186/s12951-021-01221-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Surface charge of biological and medical nanocarriers has been demonstrated to play an important role in cellular uptake. Owing to the unique physicochemical properties, charge-reversal delivery strategy has rapidly developed as a promising approach for drug delivery application, especially for cancer treatment. Charge-reversal nanocarriers are neutral/negatively charged at physiological conditions while could be triggered to positively charged by specific stimuli (i.e., pH, redox, ROS, enzyme, light or temperature) to achieve the prolonged blood circulation and enhanced tumor cellular uptake, thus to potentiate the antitumor effects of delivered therapeutic agents. In this review, we comprehensively summarized the recent advances of charge-reversal nanocarriers, including: (i) the effect of surface charge on cellular uptake; (ii) charge-conversion mechanisms responding to several specific stimuli; (iii) relation between the chemical structure and charge reversal activity; and (iv) polymeric materials that are commonly applied in the charge-reversal delivery systems.
Collapse
Affiliation(s)
- Peng Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.
| | - Daoyuan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Lin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China
| | - Kaoxiang Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 30 Qingquan Road, Yantai, 264005, Shandong, People's Republic of China.,State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co. Ltd, Yantai, 264003, People's Republic of China
| |
Collapse
|
12
|
Li Z, Li W, Zhou D, Zhao J, Ma Y, Huang L, Dong C, Wilson JX, Huang G. Alleviating Oxidative Damage-Induced Telomere Attrition: a Potential Mechanism for Inhibition by Folic Acid of Apoptosis in Neural Stem Cells. Mol Neurobiol 2021; 59:590-602. [PMID: 34741234 DOI: 10.1007/s12035-021-02623-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/26/2021] [Indexed: 01/07/2023]
Abstract
DNA oxidative damage can cause telomere attrition or dysfunction that triggers cell senescence and apoptosis. The hypothesis of this study is that folic acid decreases apoptosis in neural stem cells (NSCs) by preventing oxidative stress-induced telomere attrition. Primary cultures of NSCs were incubated for 9 days with various concentrations of folic acid (0-40 µM) and then incubated for 24 h with a combination of folic acid and an oxidant (100-µM hydrogen peroxide, H2O2), antioxidant (10-mM N-acetyl-L-cysteine, NAC), or vehicle. Intracellular folate concentration, apoptosis rate, cell proliferative capacity, telomere length, telomeric DNA oxidative damage, telomerase activity, intracellular reactive oxygen species (ROS) levels, cellular oxidative damage, and intracellular antioxidant enzyme activities were determined. The results showed that folic acid deficiency in NSCs decreased intracellular folate concentration, cell proliferation, telomere length, and telomerase activity but increased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. In contrast, folic acid supplementation dose-dependently increased intracellular folate concentration, cell proliferative capacity, telomere length, and telomerase activity but decreased apoptosis, telomeric DNA oxidative damage, and intracellular ROS levels. Exposure to H2O2 aggravated telomere attrition and oxidative damage, whereas NAC alleviated the latter. High doses of folic acid prevented telomere attrition and telomeric DNA oxidative damage by H2O2. In conclusion, inhibition of telomeric DNA oxidative damage and telomere attrition in NSCs may be potential mechanisms of inhibiting NSC apoptosis by folic acid.
Collapse
Affiliation(s)
- Zhenshu Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Wen Li
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China
- Center for International Collaborative Research On Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Dezheng Zhou
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Jing Zhao
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Yue Ma
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Ling Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Cuixia Dong
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - John X Wilson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214-8028, USA
| | - Guowei Huang
- Department of Nutrition and Food Science, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China.
- Center for International Collaborative Research On Environment, Nutrition and Public Health, Tianjin, 300070, China.
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
13
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
14
|
Sun Y, Davis E. Nanoplatforms for Targeted Stimuli-Responsive Drug Delivery: A Review of Platform Materials and Stimuli-Responsive Release and Targeting Mechanisms. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:746. [PMID: 33809633 PMCID: PMC8000772 DOI: 10.3390/nano11030746] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
To achieve the promise of stimuli-responsive drug delivery systems for the treatment of cancer, they should (1) avoid premature clearance; (2) accumulate in tumors and undergo endocytosis by cancer cells; and (3) exhibit appropriate stimuli-responsive release of the payload. It is challenging to address all of these requirements simultaneously. However, the numerous proof-of-concept studies addressing one or more of these requirements reported every year have dramatically expanded the toolbox available for the design of drug delivery systems. This review highlights recent advances in the targeting and stimuli-responsiveness of drug delivery systems. It begins with a discussion of nanocarrier types and an overview of the factors influencing nanocarrier biodistribution. On-demand release strategies and their application to each type of nanocarrier are reviewed, including both endogenous and exogenous stimuli. Recent developments in stimuli-responsive targeting strategies are also discussed. The remaining challenges and prospective solutions in the field are discussed throughout the review, which is intended to assist researchers in overcoming interdisciplinary knowledge barriers and increase the speed of development. This review presents a nanocarrier-based drug delivery systems toolbox that enables the application of techniques across platforms and inspires researchers with interdisciplinary information to boost the development of multifunctional therapeutic nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
| | - Edward Davis
- Materials Engineering Program, Mechanical Engineering Department, Auburn University, 101 Wilmore Drive, Auburn, AL 36830, USA;
| |
Collapse
|
15
|
Thomas RG, Surendran SP, Jeong YY. Tumor Microenvironment-Stimuli Responsive Nanoparticles for Anticancer Therapy. Front Mol Biosci 2020; 7:610533. [PMID: 33392264 PMCID: PMC7775573 DOI: 10.3389/fmolb.2020.610533] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer is a disease that affects a large number of people all over the world. For treating cancer, nano-drug delivery system has been introduced recently with objective of increasing therapeutic efficiency of chemotherapeutic drug. The main characteristics of this system are the encapsulation of the insoluble chemotherapeutic cargo, increasing the period of circulation in the body, as well as the delivery of the drug at that specific site. Currently, the nano-drug delivery system based on the stimuli response is becoming more popular because of the extra features for controlling the drug release based on the internal atmosphere of cancer. This review provides a summary of different types of internal (pH, redox, enzyme, ROS, hypoxia) stimuli-responsive nanoparticle drug delivery systems as well as perspective for upcoming times.
Collapse
Affiliation(s)
- Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
- BioMolecular Theranostics (BiT) Laboratory, Department of Biomedical Sciences, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Gwangju, South Korea
| | - Suchithra Poilil Surendran
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
- BioMolecular Theranostics (BiT) Laboratory, Department of Biomedical Sciences, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Gwangju, South Korea
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
- BioMolecular Theranostics (BiT) Laboratory, Department of Biomedical Sciences, Chonnam National University Medical School, Chonnam National University Hwasun Hospital, Gwangju, South Korea
| |
Collapse
|
16
|
Choudhury H, Pandey M, Wen LP, Cien LK, Xin H, Yee ANJ, Lee NJ, Gorain B, Amin MCIM, Pichika MR. Folic Acid Conjugated Nanocarriers for Efficient Targetability and Promising Anticancer Efficacy for Treatment of Breast Cancer: A Review of Recent Updates. Curr Pharm Des 2020; 26:5365-5379. [DOI: 10.2174/1381612826666200721000958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023]
Abstract
Breast cancer (BC) is the commonest cause of cancer deaths among Women. It is known to be
caused due to mutations in certain receptors, viz. estrogens or progesterones. The most frequently used conventional
treatment strategies against BC include chemotherapy, radiation therapy, and partial or entire mastectomy,
however, these strategies are often associated with multiple adverse effects, thus reducing patient compliance.
Advancement of nanotechnology in the medical application has been made to enhance the therapeutic
effectiveness with a significant reduction in the unintended side-effects associated with incorporated anticancer
drugs against cancer. The surface engineering technology of the nanocarriers is more pronounced in delivering
the therapeutics specifically to target cells. Consequently, folic acid, a small molecular ligand for the folate receptor
overexpressed cells, has shown immense response in treating BC cells. Folic acid conjugated nanocarriers
have shown remarkable efficiency in targeting overexpressed folate receptors on the surface of BC cells.
Binding of these target-specific folate-conjugated nanocarriers substantially improves the internalization of chemotherapeutics
in BC cells, without much exposing the other parts of the body. Simultaneously, these folate--
conjugated nanocarriers provide imaging for regular monitoring of targeted drug delivery systems and their responses
to an anticancer therapy. Therefore, this review demonstrates the potential of folate-conjugated nanotherapeutics
for the treatment and theranostic approaches against BC along with the significant challenges to anticancer
therapy, and the prospective insights into the clinical importance and effectiveness of folate conjugate
nanocarriers.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Lee Pei Wen
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ling Kah Cien
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ho Xin
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Alvina Ng Jia Yee
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Ng Joo Lee
- Undergraduate, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| |
Collapse
|