1
|
Guo H, Zhou B, Chang J, Chang W, Feng J, Zhang Z. Multicomponent cyclization with azides to synthesize N-heterocycles. Org Biomol Chem 2023; 21:8054-8074. [PMID: 37801029 DOI: 10.1039/d3ob01115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Heterocyclic compounds, both naturally derived and synthetically produced, constitute a wide variety of biologically active and industrially important compounds. The synthesis and application of heterocyclic compounds have garnered significant attention and experienced rapid growth in recent decades. Organic azides, due to their unique properties and distinctive reactivity, have become a convenient chemical tool for achieving a wide range of heterocycles such as triazoles and tetrazoles. Importantly, the field of multicomponent reaction (MCR) chemistry provides a convergent approach to access various N-heterocyclic scaffolds, offering novelty, diversity, and complexity. However, the exploration of MCR pathways to N-heterocyclic compounds remains incomplete. Here, we review the use of multicomponent reactions for the preparation of N-heterocycles. A wide range of reactions based on azides for the synthesis of various types of N-heterocyclic systems have been developed.
Collapse
Affiliation(s)
- Hong Guo
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Bei Zhou
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jingjing Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Wenxu Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jiyao Feng
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhenhua Zhang
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Pan K, Yao Y, Zhang Y, Gu Y, Wang Y, Ma P, Hou W, Yang G, Zhang S, Xu H. Enolate-Azide [3 + 2]-Cycloaddition Reaction Suitable for DNA-Encoded Library Synthesis. Bioconjug Chem 2023; 34:1459-1466. [PMID: 37443440 DOI: 10.1021/acs.bioconjchem.3c00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
The DNA-encoded chemical library (DEL) is a powerful hit selection technique in either basic science or innovative drug discovery. With the aim to circumvent the issue concerning DNA barcode damage in a conventional on-DNA copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC), we have successfully developed the first DNA-compatible enolate-azide [3 + 2] cycloaddition reaction. The merits of this DEL chemistry include metal-free reaction and high DNA fidelity, high conversions and easy operation, broad substrate scope, and ready access to the highly substituted 1,4,5-trisubstituted triazoles. Thus, it will not only further enrich the DEL chemistry toolbox but also will have great potential in practical DEL synthesis.
Collapse
Affiliation(s)
- Kangyin Pan
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Ying Yao
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yiyuan Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yuang Gu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yan Wang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wei Hou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Shuning Zhang
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
3
|
Vala D, Vala RM, Patel HM. Versatile Synthetic Platform for 1,2,3-Triazole Chemistry. ACS OMEGA 2022; 7:36945-36987. [PMID: 36312377 PMCID: PMC9608397 DOI: 10.1021/acsomega.2c04883] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/30/2022] [Indexed: 05/31/2023]
Abstract
1,2,3-Triazole scaffolds are not obtained in nature, but they are still intensely investigated by synthetic chemists in various fields due to their excellent properties and green synthetic routes. This review will provide a library of all synthetic routes used in the past 21 years to synthesize 1,2,3-triazoles and their derivatives using various metal catalysts (such as Cu, Ni, Ru, Ir, Rh, Pd, Au, Ag, Zn, and Sm), organocatalysts, metal-free as well as solvent- and catalyst-free neat syntheses, along with their mechanistic cycles, recyclability studies, solvent systems, and reaction condition effects on regioselectivity. Constant developments indicate that 1,2,3-triazoles will help lead to future organic synthesis and are useful for creating molecular libraries of various functionalized 1,2,3-triazoles.
Collapse
|
4
|
Ethyl 5-Formyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate: Synthesis, Crystal Structure, Hirshfeld Surface Analysis, and DFT Calculation. MOLBANK 2022. [DOI: 10.3390/m1340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For the first time, 5-formyl-1-(pyridin-3-yl)-1H-1,2,3-triazole-4-carboxylate was synthesized via a two-step scheme. The molecular structure of the compound was determined by a single-crystal X-ray diffraction analysis. The Hirshfeld surface analysis was used to study various intermolecular interactions. The crystalline structure is marked by the presence of three types of π-interactions (n→π*, lp···π, and π···π) between the -C(H)=O group and triazole rings. The compound is a versatile polyfunctional building block for construction of annulated 1,2,3-triazoles.
Collapse
|
5
|
Vroemans R, Ribone SR, Thomas J, Van Meervelt L, Ollevier T, Dehaen W. Synthesis of homochiral sulfanyl- and sulfoxide-substituted naphthyltriazoles and study of the conformational stability. Org Biomol Chem 2021; 19:6521-6526. [PMID: 34254109 DOI: 10.1039/d1ob00784j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The preparation of a series of novel homochiral atropisomeric sulfanyl- and sulfoxide-substituted naphthyltriazoles is described. The triazolization methodology used presents a new way towards novel and highly stable 1,2,3-triazole-based atropisomers, and introduces a new and complementary synthetic pathway towards 4-sulfanyl substituted 1,2,3-triazoles. Starting from sulfanyl-substituted naphthyl ketones, enantiopure amines, and 4-nitrophenyl azide, a collection of 16 sulfanyl-substituted naphthyltriazoles were obtained via the triazolization reaction in which the homochiral diastereomers are readily isolated. Subsequent monooxidation results in the preparation of several sulfoxide-substituted naphthyltriazoles. The absolute configuration of a set of diastereomeric sulfanyl- and sulfoxide-appended naphthyltriazoles was deduced via X-ray crystallography. Furthermore, the conformational stability of the atropisomers was determined experimentally, and further confirmed and analyzed with the aid of computational DFT calculations.
Collapse
Affiliation(s)
- Robby Vroemans
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Sergio R Ribone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA, CONICET), Dpto. Ciencias Farmacéuticas, Fac. Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Joice Thomas
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| | - Luc Van Meervelt
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Thierry Ollevier
- Département de chimie, Pavillon Alexandre-Vachon, Université Laval, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium.
| |
Collapse
|
6
|
Pulikkal Veettil S, Pookkandam Parambil S, Van Hoof M, Dehaen W. A Multicomponent Approach toward Angularly Fused/Linear Bitriazoles: A Cascade Cornforth Rearrangement and Triazolization. J Org Chem 2021; 86:4346-4354. [PMID: 33577310 DOI: 10.1021/acs.joc.0c03014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multicomponent reaction of triazoloketones, primary amines, and 4-nitrophenyl azide was developed for the synthesis of hitherto unknown angularly fused/linear bitriazoles. The two-stage mechanism was well proven by the isolation of the intermediate. This sequential reaction consists of Cornforth rearrangement and triazolization, which has also been demonstrated in a one-pot manner.
Collapse
Affiliation(s)
- Santhini Pulikkal Veettil
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Shandev Pookkandam Parambil
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Max Van Hoof
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| |
Collapse
|
7
|
Opsomer T, Dehaen W. Metal-free syntheses of N-functionalized and NH-1,2,3-triazoles: an update on recent developments. Chem Commun (Camb) 2021; 57:1568-1590. [PMID: 33491711 DOI: 10.1039/d0cc06654k] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of the latest developments in the metal-free synthesis of non-benzo-fused N-functionalized and NH-1,2,3-triazoles is provided in this feature article. Synthetic studies that appeared from 2016 until August 2020 are organized according to a wide-ranging classification, comprising oxidative and eliminative azide-dipolarophile cycloadditions, diazo transfer reactions and N-tosylhydrazone-mediated syntheses. The newly developed methods constitute a significant contribution to the field of 1,2,3-triazole synthesis in terms of structural variation via either the exploration of novel reactions, or the exploitation of existing methodologies.
Collapse
Affiliation(s)
- Tomas Opsomer
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium.
| | | |
Collapse
|