1
|
Yamamoto S, Yoshida K, Matsumoto M, Yamada T. Construction and evaluation of an open-source database for inhalation-based physiologically based kinetic modeling of selected categories for industrial chemicals. J Toxicol Sci 2025; 50:57-68. [PMID: 39894535 DOI: 10.2131/jts.50.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
A physiologically based kinetic (PBK) model is used for predicting chemical concentrations of toxicological concern in target tissues. Such models are important for understanding toxicokinetics. However, it is challenging to obtain chemical-specific empirical parameter values used for PBK modeling. Thus, developing methods predicting these values is necessary. Herein, we researched PBK models of inhalation exposure to industrial chemicals and developed a database of parameters of approximately 200 chemicals in humans and rodents. Next, the chemicals in the database were classified into three categories (I, IIA, and IIB) based on the intermolecular interactions for humans and rats. Quantitative relationships between blood/air and tissue/blood partition coefficients and physicochemical parameters were derived for the chemicals in each category. Regression analyses of blood/air and fat/blood partition coefficients against Henry's law constant and log D at pH 7.4 for chemicals in category IIA for humans, in which van der Waals and dipole-dipole interactions were involved, yielded 0.88 and 0.54 coefficients of determination, respectively. Moreover, these methods worked for other categories and species. The metabolic parameters maximal velocity (Vmax) and Michaelis-Menten constant (Km) of the chemicals that are primarily metabolized by cytochrome P450 were calculated for humans and rats. Multiple regression analyses of logs Vmax and Km against the occurrence frequency of molecular fragments showed good correlations, respectively. The aforementioned models predicted values close to the reported values for test chemicals within the applicability domains. Our approach could also be applied to other chemicals within the domains that are not included in the database.
Collapse
Affiliation(s)
- Shigechika Yamamoto
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Kikuo Yoshida
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Mariko Matsumoto
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences
| |
Collapse
|
2
|
Yılmaz V, Can N, Altındal A. Adsorption of VOC vapors on ZnPc: sensing and kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65302-65314. [PMID: 39579184 DOI: 10.1007/s11356-024-35576-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024]
Abstract
Thin film of sensing unit, 2,3,9,10,16,17-hexakis(3-dietylaminophenoxy)-23-etynylphenyl-(2-ferrocenyl-o-carborane)phthalocyaninato zinc(II) (ZnPc), have been deposited by spray pyrolysis technique on the quartz crystal surface with a fundamental resonance frequency of 10 MHz. The surface morphology of the film has been studied using the contact mode atomic force microscope (AFM) technique and the average surface roughness was determined to be 36.4 nm. Then, this film was exposed to the vapors of methanol, ethanol, 2-propanol, and 1-butanol with various concentrations varying between 50 and 400 ppm. In addition, studies on response time and repeatability of the sensors have also been carried out. Films exhibit maximum sensing response to methanol vapor while the lowest sensitivity of the film towards 1-butanol has been observed. After an exposure time of 10 min, the frequency shift of 415 Hz was recorded for 400 ppm methanol vapor concentration, while a frequency shift of 215 Hz was observed for the same concentration of 1-butanol. The sensor was 1.30 times more sensitive to methanol vapor than ethanol and 2.00 times more sensitive to methanol than to 1-butanol. Variations in the sensitivity of the sensor have been correlated with the number of carbon groups in analyte vapors. The effect of the number of carbon groups in analyte molecule on adsorption kinetics of the film has also been investigated and compared. Adsorption isotherms of four volatile organic compounds on ZnPc were investigated at room temperature and the experimental data obtained were correlated with different existing adsorption isotherm models such as the Langmuir, the Freundlich, and Temkin model. An overall evaluation of the obtained results showed that the sensing performance, adsorption kinetic, and adsorption isotherms are dependent on the molecular size of the analyte molecules.
Collapse
Affiliation(s)
- Vildan Yılmaz
- Department of Physics, Yıldız Technical University, 34320, Istanbul, Turkey
| | - Nursel Can
- Department of Physics, Yıldız Technical University, 34320, Istanbul, Turkey
| | - Ahmet Altındal
- Department of Physics Engineering, İstanbul Technical University, 34469, Istanbul, Turkey.
| |
Collapse
|
3
|
Bonyani M, Zebarjad SM, Kim TU, Kim HW, Kim SS. Construction of Electrospun ZnO-NiO Nanofibers for Enhanced Ethanol Gas Sensing. SENSORS (BASEL, SWITZERLAND) 2024; 24:7450. [PMID: 39685987 DOI: 10.3390/s24237450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Semiconducting metal oxides with nanofiber (NF) morphologies are among the most promising materials for the realization of gas sensors. In this study, we have prepared electrospun ZnO-NiO composite NFs with different amounts of NiO (0, 20, 40, 60 and 80% wt%) for the systematic study of ethanol gas sensing. The fabricated composite NFs were annealed at 600 °C for crystallization. Based on characterization studies, NFs were produced with desired morphologies, phases, and chemical compositions. Ethanol gas sensing studies revealed that the sensor with 40 wt% NiO had the highest response (3.6 to 10 ppm ethanol) at 300 °C among all gas sensors. The enhanced gas response was ascribed to the formation of sufficient amounts of p-n NiO-ZnO heterojunctions, NFs' high surface areas due to their one-dimensional morphologies, and acid-base interactions between ZnO and ethanol. This research highlights the need for the optimization of ZnO-NiO composite NFs so that they achieve the highest sensing response, which can be extended to other similar metal oxides.
Collapse
Affiliation(s)
- Maryam Bonyani
- Department of Materials Science and Engineering, Shiraz University, Shiraz 71454, Iran
| | | | - Tae-Un Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Hyoun Woo Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, Republic of Korea
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
4
|
Francis C, Rektor A, Valayil-Varghese T, McKibben N, Estrada I, Forbey J, Estrada D. Laser-induced graphene gas sensors for environmental monitoring. Front Chem 2024; 12:1448205. [PMID: 39544719 PMCID: PMC11560773 DOI: 10.3389/fchem.2024.1448205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/30/2024] [Indexed: 11/17/2024] Open
Abstract
Artemesia tridentata is a foundational plant taxon in western North America and an important medicinal plant threatened by climate change. Low-cost fabrication of sensors is critical for developing large-area sensor networks for understanding and monitoring a range of environmental conditions. However, the availability of materials and manufacturing processes is still in the early stages, limiting the capacity to develop cost-effective sensors at a large scale. In this study, we demonstrate the fabrication of low-cost flexible sensors using laser-induced graphene (LIG); a graphitic material synthesized using a 450-nm wavelength bench top laser patterned onto polyimide substrates. We demonstrate the effect of the intensity and focus of the incident beam on the morphology and electrical properties of the synthesized material. Raman analyses of the synthesized LIG show a defect-rich graphene with a crystallite size in the tens of nanometers. This shows that the high level of disorder within the LIG structure, along with the porous nature of the material provide a good surface for gas adsorption. The initial characterization of the material has shown an analyte response represented by a change in resistance of up to 5% in the presence of volatile organic compounds (VOCs) that are emitted and detected by Artemisia species. Bend testing up to 100 cycles provides evidence that these sensors will remain resilient when deployed across the landscapes to assess VOC signaling in plant communities. The versatile low-cost laser writing technique highlights the promise of low-cost and scalable fabrication of LIG sensors for gas sensor monitoring.
Collapse
Affiliation(s)
- Cadré Francis
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Attila Rektor
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Tony Valayil-Varghese
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
- Department of Electrical and Computer and Engineering, Boise State University, Boise, ID, United States
| | - Nicholas McKibben
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Isaac Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
| | - Jennifer Forbey
- Department of Biological Sciences, Boise State University, Boise, ID, United States
| | - David Estrada
- Micron School of Materials Science and Engineering, Boise State University, Boise, ID, United States
- Center for Advanced Energy Studies, Boise State University, Boise, ID, United States
| |
Collapse
|
5
|
Shen Y, Yuan P, Yuan Z, Cui Z, Ma D, Cheng F, Qin K, Wang H, Li E. The O-Defective g-ZnO Sensor for VOC Gases: The Adsorption-Desorption, Electronic, and Sensitivity Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17396-17404. [PMID: 39110135 DOI: 10.1021/acs.langmuir.4c01491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Adsorption-desorption performance, electronic properties, and sensitivity of O-defective g-ZnO (ODZO) gas sensors for volatile organic compounds (VOCs) are calculated using density functional theory and nonequilibrium Green's formalism. The VOCs are CH2O, CH4, C2H4O, CH4O, and C2H6. The intrinsic g-ZnO (IZO) and ODZO exhibit strong adsorption capabilities for C2H4O and CH4O. The IZO (0.118 e) and ODZO (0.059 e), which act as electron donors, exhibit the highest charge transfer to CH2O, indicating a strong interaction. The VOCs adsorption on the IZO and ODZO systems maintain nonmagnetic semiconductor characteristics. Additionally, the introduction of an O-defect causes the adsorption energy and charge transfer amount of ODZO to show an overall decrease, indicating better desorption ability. Notably, the sensitivity results show that the ODZO gas sensors exhibit high sensitivity to CH2O (39.3%), C2H4O (29.0%), and CH4O (19.6%) at a voltage of 2.6 V, consistent with the adsorption-desorption performance and electronic properties.
Collapse
Affiliation(s)
- Yang Shen
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Pei Yuan
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Zhihao Yuan
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Zhen Cui
- School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China
| | - Deming Ma
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Fengjiao Cheng
- School of Electrical Engineering, Xi'an University of Technology, Xi'an 710054, China
| | - Ke Qin
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Hanxiao Wang
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| | - Enling Li
- School of Science, Xi'an University of Technology, Xi'an 710054, China
| |
Collapse
|
6
|
Kanan S, Obeideen K, Moyet M, Abed H, Khan D, Shabnam A, El-Sayed Y, Arooj M, Mohamed AA. Recent Advances on Metal Oxide Based Sensors for Environmental Gas Pollutants Detection. Crit Rev Anal Chem 2024:1-34. [PMID: 38506453 DOI: 10.1080/10408347.2024.2325129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Optimizing materials and associated structures for detecting various environmental gas pollutant concentrations has been a major challenge in environmental sensing technology. Semiconducting metal oxides (SMOs) fabricated at the nanoscale are a class of sensor technology in which metallic species are functionalized with various dopants to modify their chemiresistivity and crystalline scaffolding properties. Studies focused on recent advances of gas sensors utilizing metal oxide nanostructures with a special emphasis on the structure-surface property relationships of some typical n-type and p-type SMOs for efficient gas detection are presented. Strategies to enhance the gas sensor performances are also discussed. These oxide material sensors have several advantages such as ease of handling, portability, and doped-based SMO sensing detection ability of environmental gas pollutants at low temperatures. SMO sensors have displayed excellent sensitivity, selectivity, and robustness. In addition, the hybrid SMO sensors showed exceptional selectivity to some CWAs when irradiated with visible light while also displaying high reversibility and humidity independence. Results showed that TiO2 surfaces can sense 50 ppm SO2 in the presence of UV light and under operating temperatures of 298-473 K. Hybrid SMO displayed excellent gas sensing response. For example, a CuO-ZnO nanoparticle network of a 4:1 vol.% CuO/ZnO ratio exhibited responses three times greater than pure CuO sensors and six times greater than pure ZnO sensors toward H2S. This review provides a critical discussion of modified gas pollutant sensing capabilities of metal oxide nanoparticles under ambient conditions, focusing on reported results during the past two decades on gas pollutants sensing.
Collapse
Affiliation(s)
- Sofian Kanan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Khaled Obeideen
- Sustainable Energy and Power Systems Research Center, RISE, University of Sharjah, Sharjah, UAE
| | - Matthew Moyet
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
| | - Heba Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Danyah Khan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | - Aysha Shabnam
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, UAE
| | | | - Mahreen Arooj
- Department of Chemistry, University of Sharjah, Sharjah, UAE
| | - Ahmed A Mohamed
- Department of Chemistry, University of Sharjah, Sharjah, UAE
| |
Collapse
|
7
|
Ghaderi A, Sabbaghzadeh J, Dejam L, Behzadi Pour G, Moghimi E, Matos RS, da Fonseca Filho HD, Țălu Ș, Salehi Shayegan A, Aval LF, Astani Doudaran M, Sari A, Solaymani S. Nanoscale morphology, optical dynamics and gas sensor of porous silicon. Sci Rep 2024; 14:3677. [PMID: 38355956 PMCID: PMC10866982 DOI: 10.1038/s41598-024-54336-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/12/2024] [Indexed: 02/16/2024] Open
Abstract
We investigated the multifaceted gas sensing properties of porous silicon thin films electrodeposited onto (100) oriented P-type silicon wafers substrates. Our investigation delves into morphological, optical properties, and sensing capabilities, aiming to optimize their use as efficient gas sensors. Morphological analysis revealed the development of unique surfaces with distinct characteristics compared to untreated sample, yielding substantially rougher yet flat surfaces, corroborated by Minkowski Functionals analysis. Fractal mathematics exploration emphasized that despite increased roughness, HF/ethanol-treated surfaces exhibit flatter attributes compared to untreated Si sample. Optical approaches established a correlation between increased porosity and elevated localized states and defects, influencing the Urbach energy value. This contributed to a reduction in steepness values, attributed to heightened dislocations and structural disturbances, while the transconductance parameter decreases. Simultaneously, porosity enhances the strength of electron‒phonon interaction. The porous silicon thin films were further tested as effective gas sensors for CO2 and O2 vapors at room temperature, displaying notable changes in electrical resistance with varying concentrations. These findings bring a comprehensive exploration of some important characteristics of porous silicon surfaces and established their potential for advanced industrial applications.
Collapse
Affiliation(s)
- Atefeh Ghaderi
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Jamshid Sabbaghzadeh
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Laya Dejam
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Physics, Islamic Azad University, West Tehran Branch, Tehran, Iran
| | - Ghobad Behzadi Pour
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
- Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, 18661-13118, Iran
| | - Emad Moghimi
- Faculty of Physics, Kharazmi University, Tehran, Iran
| | - Robert S Matos
- Amazonian Materials Group, Physics Department, Federal University of Amapá-UNIFAP, Macapá, Amapá, Brazil
| | - Henrique Duarte da Fonseca Filho
- Laboratory of Synthesis of Nanomaterials and Nanoscopy, Physics Department, Federal University of Amazonas-UFAM, Manaus, Amazonas, Brazil
| | - Ștefan Țălu
- The Directorate of Research, Development and Innovation Management (DMCDI), The Technical University of Cluj-Napoca, Constantin Daicoviciu Street, No. 15, Cluj-Napoca, 400020, Cluj County, Romania
| | - Amirhossein Salehi Shayegan
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Leila Fekri Aval
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Astani Doudaran
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Sari
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Solaymani
- Quantum Technologies Research Center (QTRC), Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
E V, Ghadei SK, Ruidas S, Bhakta V, Sakthivel R, Sankaran KJ, Bhaumik A, Dalapati S. A Metal-Free Triazacoronene-Based Bimodal VOC Sensor. ACS Sens 2024; 9:251-261. [PMID: 38207113 DOI: 10.1021/acssensors.3c01889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Developing suitable sensors for selective and sensitive detection of volatile organic compounds (VOCs) is crucial for monitoring indoor and outdoor air quality. VOCs are very harmful to our health upon inhalation or contact. Bimodal sensor materials with more than one transduction capability (optical and electrical) offer the ability to extract complementary information from the individual analyte, thus improving detection accuracy and performance. The privilege of manipulating the optoelectronic properties of the polycyclic aromatic hydrocarbon-based semiconducting materials offers rapid signal transduction in multimodal sensing applications. A thiophene-functionalized triazacoronene (TTAC) donor-acceptor-donor (D-A-D) type sensor is reported here for VOC sensing. The single-crystal X-ray structure analysis of the TTAC revealed that a distinctive supramolecular polymer architecture was formed because of cooperative π-π and intermolecular D-A interactions and exhibited rapid signal transduction upon exposure to specific VOCs. The TTAC-embedded green luminescent paper-based test strip exhibited an on-off fluorescence response upon nitrobenzene vapor exposure for 120 s. The selective and rapid response is due to the fast photoinduced electron transfer, as is evident from the time-resolved excited-state dynamics and density functional theory studies. The thick-film-based prototype chemiresistive sensor detects harmful VOCs in a custom-made gas sensing system including benzene, toluene, and nitrobenzene. The TTAC sensor rapidly responds (200 s) at relatively low temperatures (180 οC) compared to other reported metal-oxide-based sensors.
Collapse
Affiliation(s)
- Varadharajan E
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - Surya Kanta Ghadei
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Viki Bhakta
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata, West Bengal 700009, India
| | - Ramasamy Sakthivel
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | | | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mallick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Sasanka Dalapati
- Department of Materials Science, School of Technology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| |
Collapse
|
9
|
da Silva Júnior MG, Arzuza LCC, Sales HB, Farias RMDC, Neves GDA, Lira HDL, Menezes RR. A Brief Review of MoO 3 and MoO 3-Based Materials and Recent Technological Applications in Gas Sensors, Lithium-Ion Batteries, Adsorption, and Photocatalysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7657. [PMID: 38138799 PMCID: PMC10745064 DOI: 10.3390/ma16247657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Molybdenum trioxide is an abundant natural, low-cost, and environmentally friendly material that has gained considerable attention from many researchers in a variety of high-impact applications. It is an attractive inorganic oxide that has been widely studied because of its layered structure, which results in intercalation ability through tetrahedral/octahedral holes and extension channels and leads to superior charge transfer. Shape-related properties such as high specific capacities, the presence of exposed active sites on the oxygen-rich structure, and its natural tendency to oxygen vacancy that leads to a high ionic conductivity are also attractive to technological applications. Due to its chemistry with multiple valence states, high thermal and chemical stability, high reduction potential, and electrochemical activity, many studies have focused on the development of molybdenum oxide-based systems in the last few years. Thus, this article aims to briefly review the latest advances in technological applications of MoO3 and MoO3-based materials in gas sensors, lithium-ion batteries, and water pollution treatment using adsorption and photocatalysis techniques, presenting the most relevant and new information on heterostructures, metal doping, and non-stoichiometric MoO3-x.
Collapse
Affiliation(s)
- Mário Gomes da Silva Júnior
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande (UFCG), Av. Aprígio Veloso 882, Campina Grande 58429-900, PB, Brazil; (L.C.C.A.); (H.B.S.); (R.M.d.C.F.); (G.d.A.N.); (H.d.L.L.)
| | | | | | | | | | | | - Romualdo Rodrigues Menezes
- Laboratory of Materials Technology (LTM), Department of Materials Engineering, Federal University of Campina Grande (UFCG), Av. Aprígio Veloso 882, Campina Grande 58429-900, PB, Brazil; (L.C.C.A.); (H.B.S.); (R.M.d.C.F.); (G.d.A.N.); (H.d.L.L.)
| |
Collapse
|
10
|
Wang C, He T, Zhou H, Zhang Z, Lee C. Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform. Bioelectron Med 2023; 9:17. [PMID: 37528436 PMCID: PMC10394931 DOI: 10.1186/s42234-023-00118-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/17/2023] [Indexed: 08/03/2023] Open
Abstract
The fourth industrial revolution has led to the development and application of health monitoring sensors that are characterized by digitalization and intelligence. These sensors have extensive applications in medical care, personal health management, elderly care, sports, and other fields, providing people with more convenient and real-time health services. However, these sensors face limitations such as noise and drift, difficulty in extracting useful information from large amounts of data, and lack of feedback or control signals. The development of artificial intelligence has provided powerful tools and algorithms for data processing and analysis, enabling intelligent health monitoring, and achieving high-precision predictions and decisions. By integrating the Internet of Things, artificial intelligence, and health monitoring sensors, it becomes possible to realize a closed-loop system with the functions of real-time monitoring, data collection, online analysis, diagnosis, and treatment recommendations. This review focuses on the development of healthcare artificial sensors enhanced by intelligent technologies from the aspects of materials, device structure, system integration, and application scenarios. Specifically, this review first introduces the great advances in wearable sensors for monitoring respiration rate, heart rate, pulse, sweat, and tears; implantable sensors for cardiovascular care, nerve signal acquisition, and neurotransmitter monitoring; soft wearable electronics for precise therapy. Then, the recent advances in volatile organic compound detection are highlighted. Next, the current developments of human-machine interfaces, AI-enhanced multimode sensors, and AI-enhanced self-sustainable systems are reviewed. Last, a perspective on future directions for further research development is also provided. In summary, the fusion of artificial intelligence and artificial sensors will provide more intelligent, convenient, and secure services for next-generation healthcare and biomedical applications.
Collapse
Affiliation(s)
- Chan Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore, 117608, Singapore.
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou, 215123, China.
- NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, 117456, Singapore.
| |
Collapse
|
11
|
Khorramifar A, Karami H, Lvova L, Kolouri A, Łazuka E, Piłat-Rożek M, Łagód G, Ramos J, Lozano J, Kaveh M, Darvishi Y. Environmental Engineering Applications of Electronic Nose Systems Based on MOX Gas Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:5716. [PMID: 37420880 PMCID: PMC10300923 DOI: 10.3390/s23125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Nowadays, the electronic nose (e-nose) has gained a huge amount of attention due to its ability to detect and differentiate mixtures of various gases and odors using a limited number of sensors. Its applications in the environmental fields include analysis of the parameters for environmental control, process control, and confirming the efficiency of the odor-control systems. The e-nose has been developed by mimicking the olfactory system of mammals. This paper investigates e-noses and their sensors for the detection of environmental contaminants. Among different types of gas chemical sensors, metal oxide semiconductor sensors (MOXs) can be used for the detection of volatile compounds in air at ppm and sub-ppm levels. In this regard, the advantages and disadvantages of MOX sensors and the solutions to solve the problems arising upon these sensors' applications are addressed, and the research works in the field of environmental contamination monitoring are overviewed. These studies have revealed the suitability of e-noses for most of the reported applications, especially when the tools were specifically developed for that application, e.g., in the facilities of water and wastewater management systems. As a general rule, the literature review discusses the aspects related to various applications as well as the development of effective solutions. However, the main limitation in the expansion of the use of e-noses as an environmental monitoring tool is their complexity and lack of specific standards, which can be corrected through appropriate data processing methods applications.
Collapse
Affiliation(s)
- Ali Khorramifar
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199, Iran; (A.K.); (A.K.)
| | - Hamed Karami
- Department of Petroleum Engineering, Knowledge University, Erbil 44001, Iraq;
| | - Larisa Lvova
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alireza Kolouri
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199, Iran; (A.K.); (A.K.)
| | - Ewa Łazuka
- Department of Applied Mathematics, Faculty of Technology Fundamentals, Lublin University of Technology, 20-618 Lublin, Poland; (E.Ł.); (M.P.-R.)
| | - Magdalena Piłat-Rożek
- Department of Applied Mathematics, Faculty of Technology Fundamentals, Lublin University of Technology, 20-618 Lublin, Poland; (E.Ł.); (M.P.-R.)
| | - Grzegorz Łagód
- Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Jose Ramos
- College of Computing and Engineering, Nova Southeastern University (NSU), 3301 College Avenue, Fort Lauderdale, FL 33314-7796, USA;
| | - Jesús Lozano
- Department of Electric Technology, Electronics and Automation, University of Extremadura, Avda. De Elvas S/n, 06006 Badajoz, Spain;
| | - Mohammad Kaveh
- Department of Petroleum Engineering, Knowledge University, Erbil 44001, Iraq;
| | - Yousef Darvishi
- Department of Biosystems Engineering, University of Tehran, Tehran P.O. Box 113654117, Iran;
| |
Collapse
|
12
|
Wree JL, Rogalla D, Ostendorf A, Schierbaum KD, Devi A. Plasma-Enhanced Atomic Layer Deposition of Molybdenum Oxide Thin Films at Low Temperatures for Hydrogen Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36888913 DOI: 10.1021/acsami.2c19827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Molybdenum oxide thin films are very appealing for gas sensing applications due to their tunable material characteristics. Particularly, the growing demand for developing hydrogen sensors has triggered the exploration of functional materials such as molybdenum oxides (MoOx). Strategies to enhance the performance of MoOx-based gas sensors include nanostructured growth accompanied by precise control of composition and crystallinity. These features can be delivered by using atomic layer deposition (ALD) processing of thin films, where precursor chemistry plays an important role. Herein, we report a new plasma-enhanced ALD process for molybdenum oxide employing the molybdenum precursor [Mo(NtBu)2(tBu2DAD)] (DAD = diazadienyl) and oxygen plasma. Analysis of the film thickness reveals typical ALD characteristics such as linearity and surface saturation with a growth rate of 0.75 Å/cycle in a broad temperature window between 100 and 240 °C. While the films are amorphous at 100 °C, crystalline β-MoO3 is obtained at 240 °C. Compositional analysis reveals nearly stoichiometric and pure MoO3 films with oxygen vacancies present at the surface. Subsequently, hydrogen gas sensitivity of the molybdenum oxide thin films is demonstrated in a laboratory-scale chemiresistive hydrogen sensor setup at an operation temperature of 120 °C. Sensitivities of up to 18% are achieved for the film deposited at 240 °C, showing a strong correlation between crystallinity, oxygen vacancies at the surface, and hydrogen gas sensitivity.
Collapse
Affiliation(s)
- Jan-Lucas Wree
- Inorganic Materials Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Detlef Rogalla
- RUBION, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Andreas Ostendorf
- Chair of Applied Laser Technologies, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | | | - Anjana Devi
- Inorganic Materials Chemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
- Nanostructured Sensor Materials, Fraunhofer Institute for Microelectronic Circuits and Systems, Finkenstr. 61, 47057 Duisburg, Germany
| |
Collapse
|
13
|
Concepción O, de Melo O. The versatile family of molybdenum oxides: synthesis, properties, and recent applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:143002. [PMID: 36630718 DOI: 10.1088/1361-648x/acb24a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The family of molybdenum oxides has numerous advantages that make them strong candidates for high-value research and various commercial applications. The variation of their multiple oxidation states allows their existence in a wide range of compositions and morphologies that converts them into highly versatile and tunable materials for incorporation into energy, electronics, optical, and biological systems. In this review, a survey is presented of the most general properties of molybdenum oxides including the crystalline structures and the physical properties, with emphasis on present issues and challenging scientific and technological aspects. A section is devoted to the thermodynamical properties and the most common preparation techniques. Then, recent applications are described, including photodetectors, thermoelectric devices, solar cells, photo-thermal therapies, gas sensors, and energy storage.
Collapse
Affiliation(s)
- O Concepción
- Peter Gruenberg Institute 9 (PGI-9), Forschungszentrum Juelich, 52425 Juelich, Germany
| | - O de Melo
- Physics Faculty, University of Havana, 10400 Havana, Cuba
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Cd. Universitaria, A.P. 70-360, Coyoacán 04510, Mexico
| |
Collapse
|
14
|
Pathak AK, Swargiary K, Kongsawang N, Jitpratak P, Ajchareeyasoontorn N, Udomkittivorakul J, Viphavakit C. Recent Advances in Sensing Materials Targeting Clinical Volatile Organic Compound (VOC) Biomarkers: A Review. BIOSENSORS 2023; 13:114. [PMID: 36671949 PMCID: PMC9855562 DOI: 10.3390/bios13010114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In general, volatile organic compounds (VOCs) have a high vapor pressure at room temperature (RT). It has been reported that all humans generate unique VOC profiles in their exhaled breath which can be utilized as biomarkers to diagnose disease conditions. The VOCs available in exhaled human breath are the products of metabolic activity in the body and, therefore, any changes in its control level can be utilized to diagnose specific diseases. More than 1000 VOCs have been identified in exhaled human breath along with the respiratory droplets which provide rich information on overall health conditions. This provides great potential as a biomarker for a disease that can be sampled non-invasively from exhaled breath with breath biopsy. However, it is still a great challenge to develop a quick responsive, highly selective, and sensitive VOC-sensing system. The VOC sensors are usually coated with various sensing materials to achieve target-specific detection and real-time monitoring of the VOC molecules in the exhaled breath. These VOC-sensing materials have been the subject of huge interest and extensive research has been done in developing various sensing tools based on electrochemical, chemoresistive, and optical methods. The target-sensitive material with excellent sensing performance and capturing of the VOC molecules can be achieved by optimizing the materials, methods, and its thickness. This review paper extensively provides a detailed literature survey on various non-biological VOC-sensing materials including metal oxides, polymers, composites, and other novel materials. Furthermore, this review provides the associated limitations of each material and a summary table comparing the performance of various sensing materials to give a better insight to the readers.
Collapse
Affiliation(s)
- Akhilesh Kumar Pathak
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kankan Swargiary
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuntaporn Kongsawang
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pannathorn Jitpratak
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Noppasin Ajchareeyasoontorn
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jade Udomkittivorakul
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charusluk Viphavakit
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
15
|
Yang S, Yin H, Wang Z, Lei G, Xu H, Lan Z, Gu H. Gas sensing performance of In 2O 3 nanostructures: A mini review. Front Chem 2023; 11:1174207. [PMID: 37090242 PMCID: PMC10119416 DOI: 10.3389/fchem.2023.1174207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Effective detection of toxic and hazardous gases is crucial for ensuring human safety, and high-performance metal oxide-based gas sensors play an important role in achieving this goal. In2O3 is a widely used n-type metal oxide in gas sensors, and various In2O3 nanostructures have been synthesized for detecting small gas molecules. In this review, we provide a brief summary of current research on In2O3-based gas sensors. We discuss methods for synthesizing In2O3 nanostructures with various morphologies, and mainly review the sensing behaviors of these structures in order to better understand their potential in gas sensors. Additionally, the sensing mechanism of In2O3 nanostructures is discussed. Our review further indicates that In2O3-based nanomaterials hold great promise for assembling high-performance gas sensors.
Collapse
Affiliation(s)
- Shulin Yang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, Huanggang Normal University, Huanggang, China
- Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, Hubei University, Wuhan, China
| | - Huan Yin
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, Huanggang Normal University, Huanggang, China
| | - Zhao Wang
- Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, Hubei University, Wuhan, China
| | - Gui Lei
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, Huanggang Normal University, Huanggang, China
| | - Huoxi Xu
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, Huanggang Normal University, Huanggang, China
| | - Zhigao Lan
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, School of Physics and Electronic Information, Huanggang Normal University, Huanggang, China
- *Correspondence: Zhigao Lan, ; Haoshuang Gu,
| | - Haoshuang Gu
- Hubei Key Laboratory of Ferro and Piezoelectric Materials and Devices, Faculty of Physics and Electronic Sciences, Hubei University, Wuhan, China
- *Correspondence: Zhigao Lan, ; Haoshuang Gu,
| |
Collapse
|
16
|
Mini-review on a polymers film detector for chloroform vapour: julolidine as fluorescent molecular rotors (JCFMRs). CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02567-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
D’Arco A, Mancini T, Paolozzi MC, Macis S, Mosesso L, Marcelli A, Petrarca M, Radica F, Tranfo G, Lupi S, Della Ventura G. High Sensitivity Monitoring of VOCs in Air through FTIR Spectroscopy Using a Multipass Gas Cell Setup. SENSORS (BASEL, SWITZERLAND) 2022; 22:5624. [PMID: 35957181 PMCID: PMC9370991 DOI: 10.3390/s22155624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 05/02/2023]
Abstract
Human exposure to Volatile Organic Compounds (VOCs) and their presence in indoor and working environments is recognized as a serious health risk, causing impairments of varying severities. Different detecting systems able to monitor VOCs are available in the market; however, they have significant limitations for both sensitivity and chemical discrimination capability. During the last years we studied systematically the use of Fourier Transform Infrared (FTIR) spectroscopy as an alternative, powerful tool for quantifying VOCs in air. We calibrated the method for a set of compounds (styrene, acetone, ethanol and isopropanol) by using both laboratory and portable infrared spectrometers. The aim was to develop a new, and highly sensitive sensor system for VOCs monitoring. In this paper, we improved the setup performance, testing the feasibility of using a multipass cell with the aim of extending the sensitivity of our system down to the part per million (ppm) level. Considering that multipass cells are now also available for portable instruments, this study opens the road for the design of new high-resolution devices for environmental monitoring.
Collapse
Affiliation(s)
- Annalisa D’Arco
- National Institute for Nuclear Physics Laboratori Nazionali Frascati (INFN-LNF), Via E. Fermi 54, 00044 Frascati, Italy;
- Department of Physics, University of Rome ‘La Sapienza’, P.le A. Moro 2, 00185 Rome, Italy; (T.M.); (S.M.); (S.L.)
| | - Tiziana Mancini
- Department of Physics, University of Rome ‘La Sapienza’, P.le A. Moro 2, 00185 Rome, Italy; (T.M.); (S.M.); (S.L.)
- National Institute for Nuclear Physics Section Rome1, P.le A. Moro 2, 00185 Rome, Italy;
| | - Maria Chiara Paolozzi
- Department of Science, University Rome Tre, Largo San Leonardo Murialdo 1, 00146 Rome, Italy; (M.C.P.); (L.M.); (G.D.V.)
| | - Salvatore Macis
- Department of Physics, University of Rome ‘La Sapienza’, P.le A. Moro 2, 00185 Rome, Italy; (T.M.); (S.M.); (S.L.)
- National Institute for Nuclear Physics Section Rome1, P.le A. Moro 2, 00185 Rome, Italy;
| | - Lorenzo Mosesso
- Department of Science, University Rome Tre, Largo San Leonardo Murialdo 1, 00146 Rome, Italy; (M.C.P.); (L.M.); (G.D.V.)
| | - Augusto Marcelli
- National Institute for Nuclear Physics Laboratori Nazionali Frascati (INFN-LNF), Via E. Fermi 54, 00044 Frascati, Italy;
- Rome International Centre for Materials Science Superstipes, Via dei Sabelli 119A, 00185 Rome, Italy
| | - Massimo Petrarca
- National Institute for Nuclear Physics Section Rome1, P.le A. Moro 2, 00185 Rome, Italy;
- Department of Basic and Applied Sciences for Engineering (SBAI), University of Rome ’La Sapienza’, Via Scarpa 16, 00161 Rome, Italy
| | - Francesco Radica
- Department of Engineering and Geology, University Gabriele d’Annunzio Chieti-Pescara, Via dei Vestini, Campus Universitario, 66100 Chieti, Italy;
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Monte Porzio Catone, 00078 Rome, Italy;
| | - Stefano Lupi
- Department of Physics, University of Rome ‘La Sapienza’, P.le A. Moro 2, 00185 Rome, Italy; (T.M.); (S.M.); (S.L.)
- National Institute for Nuclear Physics Section Rome1, P.le A. Moro 2, 00185 Rome, Italy;
| | - Giancarlo Della Ventura
- Department of Science, University Rome Tre, Largo San Leonardo Murialdo 1, 00146 Rome, Italy; (M.C.P.); (L.M.); (G.D.V.)
- INGV, Via di Vigna Murata 605, 00143 Rome, Italy
| |
Collapse
|
18
|
|
19
|
Cova CM, Rincón E, Espinosa E, Serrano L, Zuliani A. Paving the Way for a Green Transition in the Design of Sensors and Biosensors for the Detection of Volatile Organic Compounds (VOCs). BIOSENSORS 2022; 12:51. [PMID: 35200311 PMCID: PMC8869180 DOI: 10.3390/bios12020051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 05/06/2023]
Abstract
The efficient and selective detection of volatile organic compounds (VOCs) provides key information for various purposes ranging from the toxicological analysis of indoor/outdoor environments to the diagnosis of diseases or to the investigation of biological processes. In the last decade, different sensors and biosensors providing reliable, rapid, and economic responses in the detection of VOCs have been successfully conceived and applied in numerous practical cases; however, the global necessity of a sustainable development, has driven the design of devices for the detection of VOCs to greener methods. In this review, the most recent and innovative VOC sensors and biosensors with sustainable features are presented. The sensors are grouped into three of the main industrial sectors of daily life, including environmental analysis, highly important for toxicity issues, food packaging tools, especially aimed at avoiding the spoilage of meat and fish, and the diagnosis of diseases, crucial for the early detection of relevant pathological conditions such as cancer and diabetes. The research outcomes presented in the review underly the necessity of preparing sensors with higher efficiency, lower detection limits, improved selectivity, and enhanced sustainable characteristics to fully address the sustainable manufacturing of VOC sensors and biosensors.
Collapse
Affiliation(s)
- Camilla Maria Cova
- Department of Chemistry, University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy;
| | - Esther Rincón
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Eduardo Espinosa
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Luis Serrano
- BioPren Group, Inorganic Chemistry and Chemical Engineering Department, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain; (E.R.); (E.E.); (L.S.)
| | - Alessio Zuliani
- Department of Chemistry, University of Florence and CSGI, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy;
| |
Collapse
|
20
|
Huang Y, Shao Y, Bai Y, Yuan Q, Ming T, Davies P, Lu X, de Richter R, Li W. Feasibility of Solar Updraft Towers as Photocatalytic Reactors for Removal of Atmospheric Methane-The Role of Catalysts and Rate Limiting Steps. Front Chem 2021; 9:745347. [PMID: 34568287 PMCID: PMC8461309 DOI: 10.3389/fchem.2021.745347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the alarming speed of global warming, greenhouse gas removal from atmosphere will be absolutely necessary in the coming decades. Methane is the second most harmful greenhouse gas in the atmosphere. There is an emerging technology proposed to incorporating photocatalysis with solar updraft Towers (SUT) to remove methane from the air at a planetary scale. In this study, we present a deep analysis by calculating the potential of methane removal in relation to the dimensions and configuration of SUT using different photocatalysts. The analysis shows that the methane removal rate increases with the SUT dimensions and can be enhanced by changing the configuration design. More importantly, the low methane removal rate on conventional TiO2 photocatalyst can be significantly improved to, for example, 42.5% on a more effective Ag-doped ZnO photocatalyst in a 200 MW SUT while the photocatalytic reaction is the rate limiting step. The factors that may further affect the removal of methane, such as more efficient photocatalysts, night operation and reaction zone are discussed as possible solutions to further improve the system.
Collapse
Affiliation(s)
- Yanfang Huang
- Department of Chemical and Biological Engineering, Nantong Vocational University, Nantong, China
| | - Yimin Shao
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Yang Bai
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| | - Qingchun Yuan
- School of Engineering and Applied Science, Aston University, Birmingham, United Kingdom
| | - Tingzhen Ming
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, China
| | - Philip Davies
- School of Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, China
| | | | - Wei Li
- Institute for Materials and Processes, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Qiagedeer A, Yamagishi H, Hayashi S, Yamamoto Y. Polymer Optical Microcavity Sensor for Volatile Organic Compounds with Distinct Selectivity toward Aromatic Hydrocarbons. ACS OMEGA 2021; 6:21066-21070. [PMID: 34423214 PMCID: PMC8375105 DOI: 10.1021/acsomega.1c02749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/27/2021] [Indexed: 05/04/2023]
Abstract
A whispering-gallery mode (WGM) optical resonance sensor for volatile organic compounds (VOCs) is developed from polystyrene (PS) microspheres doped with fluorescent β-cyano-appended oligo(p-phenylenevinylene) (β-COPV). The β-COPV-doped PS microspheres (MSCOPV) are formed by the miniemulsion method in a binary solvent. MSCOPV expand upon permeation of VOCs into the PS matrix and exhibit a spectral shift of the WGM resonance peak. The permeation efficiency is highly dependent on the chemical affinity between the analyte and the polymer matrix, with exceptionally high selectivity toward aromatic hydrocarbons such as benzene, toluene, and xylenes (BTXs). The high selectivity and sensitivity of MSCOPV are in clear contrast to those of conventional WGM sensors that just detect VOCs nonpreferentially through adsorption onto the surface.
Collapse
Affiliation(s)
- Airong Qiagedeer
- Department
of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroshi Yamagishi
- Department
of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Tsukuba
Research Center for Energy Materials Science (TREMS), Faculty of Pure
and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shotaro Hayashi
- School
of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Yohei Yamamoto
- Department
of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Tsukuba
Research Center for Energy Materials Science (TREMS), Faculty of Pure
and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
22
|
Radica F, Della Ventura G, Malfatti L, Cestelli Guidi M, D'Arco A, Grilli A, Marcelli A, Innocenzi P. Real-time quantitative detection of styrene in atmosphere in presence of other volatile-organic compounds using a portable device. Talanta 2021; 233:122510. [PMID: 34215125 DOI: 10.1016/j.talanta.2021.122510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
Exposure to styrene is a major safety concern in the fibreglass processing industry. This compound is classified by the International Agency for Research on Cancer as a possible human carcinogen. Several types of analytical equipment exist for detecting volatile organic compounds (VOCs) in the atmosphere; however, most of them operate ex-situ or do not provide easy discrimination between different molecules. This work introduces an improved and portable method based on FTIR spectroscopy to analyse toxic gaseous substances in working sites down to a concentration of less than 4 ppm. Styrene and a combination of VOCs typically associated with it in industrial processes, such as acetone, ethanol, xylene and isopropanol, have been used to calibrate and test the methodology. The results demonstrate that the technique offers the possibility to discriminate between different gaseous compounds in the atmosphere with a high degree of confidence and obtain very accurate quantitative information on their concentration, down to the ppm level, even when different VOCs are present in a mixture.
Collapse
Affiliation(s)
- Francesco Radica
- Department of Science, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy; Istituto Nazionale di Fisica Nucleare - LNF, Via Enrico Fermi 54, 00044, Frascati, Italy
| | - Giancarlo Della Ventura
- Department of Science, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy; Istituto Nazionale di Fisica Nucleare - LNF, Via Enrico Fermi 54, 00044, Frascati, Italy; Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143, Roma, Italy
| | - Luca Malfatti
- Department of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, CR-INSTM, Via Vienna 2, 07100, Sassari, Italy
| | | | - Annalisa D'Arco
- Istituto Nazionale di Fisica Nucleare - Section of Rome "La Sapienza", P. Aldo Moro 5, 00185, Roma, Italy
| | - Antonio Grilli
- Istituto Nazionale di Fisica Nucleare - LNF, Via Enrico Fermi 54, 00044, Frascati, Italy
| | - Augusto Marcelli
- Istituto Nazionale di Fisica Nucleare - LNF, Via Enrico Fermi 54, 00044, Frascati, Italy; Rome International Centre for Materials Science Superstripes, Via Dei Sabelli 119A, 00185, Rome, Italy
| | - Plinio Innocenzi
- Department of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, CR-INSTM, Via Vienna 2, 07100, Sassari, Italy.
| |
Collapse
|
23
|
Abstract
During the past two decades, one–dimensional (1D) metal–oxide nanowire (NW)-based molecular sensors have been witnessed as promising candidates to electrically detect volatile organic compounds (VOCs) due to their high surface to volume ratio, single crystallinity, and well-defined crystal orientations. Furthermore, these unique physical/chemical features allow the integrated sensor electronics to work with a long-term stability, ultra-low power consumption, and miniature device size, which promote the fast development of “trillion sensor electronics” for Internet of things (IoT) applications. This review gives a comprehensive overview of the recent studies and achievements in 1D metal–oxide nanowire synthesis, sensor device fabrication, sensing material functionalization, and sensing mechanisms. In addition, some critical issues that impede the practical application of the 1D metal–oxide nanowire-based sensor electronics, including selectivity, long-term stability, and low power consumption, will be highlighted. Finally, we give a prospective account of the remaining issues toward the laboratory-to-market transformation of the 1D nanostructure-based sensor electronics.
Collapse
|
24
|
Shellaiah M, Sun KW. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:633. [PMID: 33477501 PMCID: PMC7831086 DOI: 10.3390/s21020633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
Environmental pollution related to volatile organic compounds (VOCs) has become a global issue which attracts intensive work towards their controlling and monitoring. To this direction various regulations and research towards VOCs detection have been laid down and conducted by many countries. Distinct devices are proposed to monitor the VOCs pollution. Among them, chemiresistor devices comprised of inorganic-semiconducting materials with diverse nanostructures are most attractive because they are cost-effective and eco-friendly. These diverse nanostructured materials-based devices are usually made up of nanoparticles, nanowires/rods, nanocrystals, nanotubes, nanocages, nanocubes, nanocomposites, etc. They can be employed in monitoring the VOCs present in the reliable sources. This review outlines the device-based VOC detection using diverse semiconducting-nanostructured materials and covers more than 340 references that have been published since 2016.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
| |
Collapse
|
25
|
Aljaafari A, Ahmed F, Awada C, Shaalan NM. Flower-Like ZnO Nanorods Synthesized by Microwave-Assisted One-Pot Method for Detecting Reducing Gases: Structural Properties and Sensing Reversibility. Front Chem 2020; 8:456. [PMID: 32714894 PMCID: PMC7345984 DOI: 10.3389/fchem.2020.00456] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/01/2020] [Indexed: 11/13/2022] Open
Abstract
In this work, flower-like ZnO nanorods (NRs) were successfully prepared using microwave-assisted techniques at a low temperature. The synthesized NRs exhibited a smooth surface and good crystal structure phase of ZnO. The sharp peak of the XRD and Raman spectrum confirmed the high crystallinity of these ZnO NRs with a pure wurtzite structure. The nanorods were ~2 μm in length and ~150 nm in diameter, respectively. The electron diffraction pattern confirmed that the single crystal ZnO nanorods aligned along the [001] plane. The NRs were applied to fabricate a gas sensor for reducing gases such as CH4, CO, and H2. The sensor showed a good performance and sensitivity toward the target gases. However, its response toward CH4 and CO was higher compared to H2 gas. Although the operating temperature was varied from room temperature (RT) up to 350°C, the sensor did not show a response toward any of the target gases in the range of RT-150°C, but dramatic enhancement of the sensor response was observed at 200°C, and up to higher temperatures. This behavior was ascribed to the activity of the smooth surface and the reactivity of surface oxygen species with the targeted gases. The sensor response was measured at various gas concentrations, where the calibration curve was shown. The gas sensing mechanism was described in terms of the reaction of the gases with the transformed oxygen species on the surface of the oxides.
Collapse
Affiliation(s)
- Abdullah Aljaafari
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Faheem Ahmed
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Chawki Awada
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagih M. Shaalan
- Department of Physics, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Physics Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|