1
|
Gulbag A, Huang M, Rong B, Sreenan B, Zhu X. A Simple Circuit for Time-Resolved Luminescence (TRL) Measurement Instruments: Demonstration Through a Smartphone-Based TRL Imager for Anticounterfeiting Application. IEEE SENSORS LETTERS 2025; 9:5500704. [PMID: 40027429 PMCID: PMC11870667 DOI: 10.1109/lsens.2025.3535901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Time-resolved luminescence (TRL) measurement is a sensitive detection technique by eliminating sample autofluorescence, but TRL measurement instruments composed of multiple key components (e.g., a rapidly pulsed light excitation source, a time-gated optical detector, and a synchronization module aligning the timing between the light source and the detector) have been sophisticated, expensive, or bulky, which limits their point-of-care or in-field applications. To reduce the cost and complexity of these instruments, in this work, we developed a simple circuit for rapid LED pulsing and accurate timing synchronization, and implemented it in a compact TRL imager with a UV LED as light source and a chopper-coupled smartphone camera as time-gated optical detector. The TRL measurement of this imager using this circuit was successfully validated through an anticounterfeiting application. We believe that this simple circuit can be adopted in the development of low-cost and compact TRL measurement instruments for broad point-of-care or in-field applications.
Collapse
Affiliation(s)
- Alim Gulbag
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV 98557 USA
| | - Michael Huang
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV 98557 USA
| | - Brian Rong
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV 98557 USA
| | - Benjamin Sreenan
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV 98557 USA
| | - Xiaoshan Zhu
- Department of Electrical and Biomedical Engineering, University of Nevada Reno, NV 98557 USA
| |
Collapse
|
2
|
Gao L, Chen R, Li H, Xu D, Zheng D. Time-resolved fluorescence nanoprobe of acetylcholinesterase based on ZnGeO:Mn luminescence nanorod modified with metal ions. Anal Bioanal Chem 2023; 415:7047-7055. [PMID: 37889311 DOI: 10.1007/s00216-023-05007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
A novel time-resolved fluorescence nanoprobe (PBMO, PLNR-BSA-Mn2+-OPD) is fabricated for the label-free determination of acetylcholinesterase (AChE). The ZnGeO:Mn persistent luminescence nanorod (PLNR) and Mn(II) are, respectively, exploited as the signal molecule and quencher to construct the PBMO nanopobe using bovine serum albumin (BSA) as the surface-modified shell and o-phenylenediamine (OPD) as the reducing agent. In the presence of H2O2, the persistent luminescence of PBMO at 530 nm is enhanced remarkably within 30 s due to the oxidation of Mn(II). H2O2 can react with thiocholine (TCh), which is produced through the enzymatic degradation of acetylcholine (ATCh) by AChE. The PBMO nanoprobe is successfully applied to the determination of AChE in the linear range of 0.08-10 U L-1, with a detection limit of 0.03 U L-1 (3σ/s). The practicability of this PBMO nanoprobe is confirmed by accurately monitoring AChE contents in human serum samples, giving rise to satisfactory spiking recoveries of 96.2-103.6%.
Collapse
Affiliation(s)
- Lifang Gao
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| | - Rong Chen
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Haixia Li
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Dan Xu
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Danning Zheng
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
3
|
Deng Q, Liu Y, Zhu Z, Shu X. Microsecond-resolved smartphone time-gated luminescence spectroscopy. OPTICS LETTERS 2022; 47:3427-3430. [PMID: 35838696 DOI: 10.1364/ol.467458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Time-gated luminescence spectra are usually measured by laboratory instruments equipped with high-speed excitation sources and spectrometers, which are always bulky and expensive. To reduce the reliance on expensive laboratory instruments, we demonstrate the first, to the best of our knowledge, use of a smartphone for the detection of time-gated luminescence spectra. A mechanical chopper is used as the detection shutter and an optical switch is placed at the edge of the wheel to convert the chopping signal into a transistor-transistor logic (TTL) signal which is used to control the excitation source and achieve synchronization. The time-gated luminescence spectra at different delay times of Eu(TTA)3 powder and the solutions of Eu-tetracycline complex are successfully detected with a temporal resolution of tens of microseconds by the proposed approach. We believe our approach offers a route toward portable instruments for the measurement of luminescence spectra and lifetimes.
Collapse
|
4
|
Elenkova D, Lyapchev R, Romanova J, Morgenstern B, Dimitrova Y, Dimov D, Tsvetkov M, Zaharieva J. Luminescent Complexes of Europium (III) with 2-(Phenylethynyl)-1,10-phenanthroline: The Role of the Counterions. Molecules 2021; 26:molecules26237272. [PMID: 34885868 PMCID: PMC8658859 DOI: 10.3390/molecules26237272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
New antenna ligand, 2-(phenylethynyl)-1,10-phenanthroline (PEP), and its luminescent Eu (III) complexes, Eu(PEP)2Cl3 and Eu(PEP)2(NO3)3, are synthesized and characterized. The synthetic procedure applied is based on reacting of europium salts with ligand in hot acetonitrile solutions in molar ratio 1 to 2. The structure of the complexes is refined by X-ray diffraction based on the single crystals obtained. The compounds [Eu(PEP)2Cl3]·2CH3CN and [Eu(PEP)2(NO3)3]∙2CH3CN crystalize in monoclinic space group P21/n and P21/c, respectively, with two acetonitrile solvent molecules. Intra- and inter-ligand π-π stacking interactions are present in solid stat and are realized between the phenanthroline moieties, as well as between the substituents and the phenanthroline units. The optical properties of the complexes are investigated in solid state, acetonitrile and dichloromethane solution. Both compounds exhibit bright red luminescence caused by the organic ligand acting as antenna for sensitization of Eu (III) emission. The newly designed complexes differ in counter ions in the inner coordination sphere, which allows exploring their influence on the stability, molecular and supramolecular structure, fluorescent properties and symmetry of the Eu (III) ion. In addition, molecular simulations are performed in order to explain the observed experimental behavior of the complexes. The discovered structure-properties relationships give insight on the role of the counter ions in the molecular design of new Eu (III) based luminescent materials.
Collapse
Affiliation(s)
- Denitsa Elenkova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
- Correspondence: ; Tel.:+359-2-8161325
| | - Rumen Lyapchev
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
| | - Julia Romanova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
| | - Bernd Morgenstern
- Department of Inorganic Solid-State Chemistry, Saarland University, 66123 Saarbrücken, Germany;
| | - Yana Dimitrova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
| | - Deyan Dimov
- Institute of Optical Materials and Technologies, Bulgarian Academy of Science, 1113 Sofia, Bulgaria;
| | - Martin Tsvetkov
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
| | - Joana Zaharieva
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (R.L.); (J.R.); (Y.D.); (M.T.); (J.Z.)
| |
Collapse
|
5
|
Gao L, Zhang X, Yang R, Lv Z, Yang W, Hu Y, Zhou B. Time-resolved fluorescence determination of albumin using ZnGeO:Mn luminescence nanorods modified with polydopamine nanoparticles. Mikrochim Acta 2021; 188:429. [PMID: 34817697 DOI: 10.1007/s00604-021-05097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
A novel time-resolved fluorescence (TRF) pobe is constructed to detect human serum albumin (HSA) by exploiting ZnGeO:Mn persistent luminescence nanorods (ZnGeO:Mn PLNRs) and polydopamine nanoparticles (PDA NPs). HSA-induced dynamic quenching leads to the fluorescence decrease of ZnGeO:Mn PLNRs, providing the basis for quantitative analysis of HSA. The excellent photo-thermal conversion performance of PDA NPs is helpful to the collision process between ZnGeO:Mn PLNRs and HSA, inducing significant improvement of sensitivity. HSA is quantified by measuring time-resolved fluorescence at 540 nm under excitation of 250-nm light. Under optimal conditions, HSA in the linear range 0.1-100 ng mL-1 are detected by this PDA-mediated ZnGeO:Mn probe with high sensitivity and selectivity, and the detection limit is 36 pg mL-1 (3σ/s). The RSD for the quantification of HSA (5 ng mL-1, n = 11) is 5.2%. The practicability of this TRF probe is confirmed by accurate monitoring HSA contents in urine samples, giving rise to satisfactory spiking recoveries of 96.2-106.0%.
Collapse
Affiliation(s)
- Lifang Gao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| | - Xu Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Runlin Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai 10Th People's Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Wenge Yang
- The Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yonghong Hu
- The Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bin Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China. .,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|