1
|
Yin L, Zhang E, Mao T, Zhu Y, Ni S, Li Y, Liu C, Fang Y, Ni K, Lu Y, Li H, Zhou M, Hu Q. Macrophage P2Y 6R activation aggravates psoriatic inflammation through IL-27-mediated Th1 responses. Acta Pharm Sin B 2024; 14:4360-4377. [PMID: 39525587 PMCID: PMC11544167 DOI: 10.1016/j.apsb.2024.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 11/16/2024] Open
Abstract
Purinergic signaling plays a causal role in the modulation of immune inflammatory response in the course of psoriasis, but its regulatory mechanism remains unclear. As a member of purinoceptors, P2Y6R mainly distributed in macrophages was significantly up-expressed in skin lesions from patients with psoriasis in the present study. Here, the severity of psoriasis was alleviated in imiquimod-treated mice with macrophages conditional knockout of P2Y6R, while the cell-chat algorithm showed there was a correlation between macrophage P2Y6R and Th1 cells mediated by IL-27. Mechanistically, P2Y6R enhanced PLC β /p-PKC/MAPK activation to induce IL-27 release dependently, which subsequently regulated the differentiation of Th1 cells, leading to erythematous and scaly plaques of psoriasis. Interestingly, we developed a novel P2Y6R inhibitor FS-6, which bonds with the ARG266 side chain of P2Y6R, exhibited remarkable anti-psoriasis effects targeting P2Y6R. Our study provides insights into the role of P2Y6R in the pathogenesis of psoriasis and suggests its potential as a target for the development of therapeutic interventions. A novel P2Y6R inhibitor FS-6 could be developed as an anti-psoriasis drug candidate for the clinic.
Collapse
Affiliation(s)
- Li Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Enming Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Tianqi Mao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Yifan Zhu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Shurui Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yehong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yafei Fang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Kexin Ni
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhe Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, China
| | - Mengze Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Sundius T, Brandán SA. Structural, harmonic force field and vibrational studies of cholinesterase inhibitor tacrine used for treatment of Alzheimer's disease. Heliyon 2023; 9:e17280. [PMID: 37441405 PMCID: PMC10333470 DOI: 10.1016/j.heliyon.2023.e17280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Different structures of free base (FB), two cationic forms (CA) and three hydrochloride forms (HCl) of cholinesterase inhibitor tacrine used for treatment of Alzheimer 's disease was evaluated using hybrid B3LYP calculations in order to perform their complete vibrational assignments using the scaled harmonic force fields. Structures of anhydrous form of tacrine have been optimized in gas phase and in aqueous solution. The structure of form III HCl is in agreement with the experimental determined by X-ray diffraction while the predicted IR, Raman, 1H- 13C NMR and UV spectra show good correlations with the corresponding experimental ones. Energy values show that the three forms of HCl can exist in both media because these energetic values decrease from 35.15 kJ/mol in gas phase to 5.51 kJ/mol in solution. For the most stable species of tacrine, the following stability order using natural bond orbital (NBO) studies was found: form I HCl > form III HCl > form I CA > FB. CA presents the higher solvation energy value, as reported for hydrochloride species of alkaloids and antihypertensive agents. The structural parameters of form III of HCl present better concordance and corresponds to that experimental observed in the solid phase. Higher topological properties of form III together with the strong N2-H26⋯Cl31 interaction could justify the presence of this form in the solid phase and in solution and the higher stabilities in both media. The gap values support the higher reactivity of form III while FB is the less reactive species in both media. Complete vibrational assignments for FB, CA and HCl species together with the corresponding scaled force constants are reported.
Collapse
Affiliation(s)
- Tom Sundius
- Department of Physics, University of Helsinki, Finland
| | - Silvia Antonia Brandán
- Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000, San Miguel de Tucumán, Tucumán, Argentina
| |
Collapse
|
3
|
Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:ph16010095. [PMID: 36678592 PMCID: PMC9864454 DOI: 10.3390/ph16010095] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The enhancement of cholinergic functions via acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition is considered a valuable therapeutic strategy for the treatment of Alzheimer's disease. This study aimed to evaluate the in vitro effect of ZINC390718, previously filtered using computational approaches, on both cholinesterases and to characterize, using a molecular dynamics (MD) simulation, the possible binding mode of this compound inside the cholinesterase enzymes. The in vitro cytotoxicity effect was also investigated using a primary astrocyte-enriched glial cell culture. ZINC390718 presented in vitro dual inhibitory activity against AChE at a high micromolar range (IC50 = 543.8 µM) and against BuChE (IC50 = 241.1 µM) in a concentration-dependent manner, with greater activity against BuChE. The MD simulation revealed that ZINC390718 performed important hydrophobic and H-bond interactions with the catalytic residue sites on both targets. The residues that promoted the hydrophobic interactions and H-bonding in the AChE target were Leu67, Trp86, Phe123, Tyr124, Ser293, Phe295, and Tyr341, and on the BuChE target, they were Asp70, Tyr332, Tyr128, Ile442, Trp82, and Glu197. The cytotoxic effect of Z390718, evaluated via cell viability, showed that the molecule has low in vitro toxicity. The in vitro and in silico results indicate that ZINC390718 can be used as chemotype for the optimization and identification of new dual cholinesterase inhibitors.
Collapse
|
4
|
Chemical Synthesis and Biological Activities of Amaryllidaceae Alkaloid Norbelladine Derivatives and Precursors. Molecules 2022; 27:molecules27175621. [PMID: 36080382 PMCID: PMC9457815 DOI: 10.3390/molecules27175621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
Amaryllidaceae alkaloids (AAs) are a structurally diverse family of alkaloids recognized for their many therapeutic properties, such as antiviral, anti-cholinesterase, and anticancer properties. Norbelladine and its derivatives, whose biological properties are poorly studied, are key intermediates required for the biosynthesis of all ~650 reported AAs. To gain insight into their therapeutic potential, we synthesized a series of O-methylated norbelladine-type alkaloids and evaluated their cytotoxic effects on two types of cancer cell lines, their antiviral effects against the dengue virus (DENV) and the human immunodeficiency virus 1 (HIV-1), and their anti-Alzheimer’s disease (anti-cholinesterase and -prolyl oligopeptidase) properties. In monocytic leukemia cells, norcraugsodine was highly cytotoxic (CC50 = 27.0 μM), while norbelladine was the most cytotoxic to hepatocarcinoma cells (CC50 = 72.6 μM). HIV-1 infection was impaired only at cytotoxic concentrations of the compounds. The 3,4-dihydroxybenzaldehyde (selectivity index (SI) = 7.2), 3′,4′-O-dimethylnorbelladine (SI = 4.8), 4′-O-methylnorbelladine (SI > 4.9), 3′-O-methylnorbelladine (SI > 4.5), and norcraugsodine (SI = 3.2) reduced the number of DENV-infected cells with EC50 values ranging from 24.1 to 44.9 μM. The O-methylation of norcraugsodine abolished its anti-DENV potential. Norbelladine and its O-methylated forms also displayed butyrylcholinesterase-inhibition properties (IC50 values ranging from 26.1 to 91.6 μM). Altogether, the results provided hints of the structure−activity relationship of norbelladine-type alkaloids, which is important knowledge for the development of new inhibitors of DENV and butyrylcholinesterase.
Collapse
|
5
|
Zhang X, Zhang Z, Guo J, Ma J, Xie S, Zhao Y, Wang C. Combination of multiple computational methods revealing specific sub-sectional recognition and hydrogen-bond dependent transportation of CKII peptide fragment in O-GlcNAc transferase. Comput Struct Biotechnol J 2021; 19:2045-2056. [PMID: 33995901 PMCID: PMC8085782 DOI: 10.1016/j.csbj.2021.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/17/2022] Open
Abstract
Mechanism of CKII peptide recognition, transportation and binding in OGT is obtained. Peptide delivery is strong exothermic, highly dependent on hydrogen bond network. Typical ‘spread’ & ‘V’ conformation change noticed for peptide accompanies stable OGT. Specific subsection of peptide has diverse performance in its recognition and delivery. Multiple methods combination may be used in other bio-system with flexible substrate.
O-linked β-N-acetyl-D-glucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme in many cellular physiological catalytic reactions that regulates protein O-GlcNAcylation. Aberrant O-GlcNAcylation is related to insulin resistance, diabetic complications, cancer and neurodegenerative diseases. Understanding the peptide delivery in OGT is significant in comprehending enzymatic catalytic process, target-protein recognition and pathogenic mechanism. Herein extensive molecular dynamics (MD) simulations combined with various techniques are utilized to study the recognizing and binding mechanism of peptide fragment extracted from casein kinase II by OGT from atomic level. The residues of His496, His558, Thr633, Lys634, and Pro897 are demonstrated to play a dominant role in the peptide stabilization via hydrogen bonds and σ-π interaction, whose van der Waals and non-polar solvent effects provide the main driving force. In addition, two channels are identified. The delivery mode, mechanism together with thermodynamic and dynamic characterizations for the most favorable channel are determined. The peptide is more inclined to be recognized by OGT through the cavity comprised of residues 799–812, 893–899, and 865–871, and Tyr13-terminal is prior recognized to Met26-terminal. The transportation process is accompanied with conformation changes between the “spread” and “V” shapes. The whole process is strong exothermic that is highly dependent on the variation of hydrogen bond interactions between peptide and OGT as well as the performance of different subsections of peptide. Besides that, multiple computational methods combinations may contribute meaningfully to calculation of similar bio-systems with long and flexible substrate.
Collapse
Affiliation(s)
- Xiao Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Zhiyang Zhang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jia Guo
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jing Ma
- School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Songqiang Xie
- School of Pharmacy, Henan University, Kaifeng 475004, People's Republic of China
| | - Yuan Zhao
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Chaojie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|