1
|
He J, Wu M, Wang X, Xu R, Zhang S, Zhao X. Development of Molecularly Imprinted Photonic Crystals Sensor for High-Sensitivity, Rapid Detection of Sulfamethazine in Food Samples. Polymers (Basel) 2025; 17:160. [PMID: 39861233 PMCID: PMC11768265 DOI: 10.3390/polym17020160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
As a veterinary drug, sulfamethazine is frequently used to control animal diseases. In this study, a novel molecularly imprinted photonic crystal sensor for the fast visual detection of sulfamethazine in milk and chicken has been developed. Under optimum preparation conditions, a molecularly imprinted, photonic crystal with an anti-opal structure and a clear bright color was prepared and characterized. The adsorption conditions, including adsorption solvent, solvent pH, and detection time, were studied in detailed. Based on its excellent selectivity and fast response, a photonic crystal sensor detection method for the quantitative analysis of sulfamethazine was established, which achieved good linearity, ranging from 10-4 mg/L to 10 mg/L, a limit detection of 1.16 μg/L, and spiked recoveries of 80.56% to 103.59%, with a relative standard deviation (RSD) <6.41%. More importantly, the detection process could be completed within 3 min. This method provides an alternative for the rapid screening of sulfamethazine in food samples.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolei Zhao
- Shandong Key Laboratory of Healthy Food Resources Exploration and Creation, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
2
|
Yang Y, Yu L, Jiang X, Li Y, He X, Chen L, Zhang Y. Recent advances in photonic crystal-based chemical sensors. Chem Commun (Camb) 2024; 60:9177-9193. [PMID: 39099372 DOI: 10.1039/d4cc01503g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The increasing attention towards environmental quality, food safety, public security and medical diagnosis demands high requirements and standards for chemical sensors with merits of rapid response, high precision, long-term stability and reusability. In this case, a prominent innovation in sensory materials holds potential to realize new generations of chemical sensor technologies. Specifically, photonic crystals (PCs) as structured dielectric materials with spatially periodic ordered arrangements offer unique advantages in improving the sensing performance of chemical sensors. Consequently, the promising properties of PCs promote research on their implementation as an integral part of chemical sensors. This review highlights the integration of PCs into chemical sensors including a range of building blocks for the construction of PCs with versatile opal or opal inverse structural architectures and a delicate choice of surface functionality with associated sensing interfaces for target recognition and signal transduction. Subsequently, based on their synthesis and functionality, we focus on introducing the sensing principles of recent advances in PC-based chemical sensors, such as reflection spectra-based sensing, visual colorimetric sensing, fluorescence sensing, surface-enhanced Raman spectroscopy (SERS)-based sensing and other integrated sensing. Finally, the future prospects and challenges are discussed for the further improvement of PC-based chemical sensors.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Licheng Yu
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xiaowen Jiang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116011, China
| |
Collapse
|
3
|
Dashtian K, Afshar Gheshlaghi F, Zare-Dorabei R, Mahdavi M. Prussian Blue Analogues-Derived Molecularly Imprinted Nanozyme Array for Septicemia Detection. ACS APPLIED BIO MATERIALS 2024; 7:3346-3357. [PMID: 38695543 DOI: 10.1021/acsabm.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Septicemia, a severe bacterial infection, poses significant risks to human health. Early detection of septicemia by tracking specific biomarkers is crucial for a timely intervention. Herein, we developed a molecularly imprinted (MI) TiO2-Fe-CeO2 nanozyme array derived from Ce[Fe(CN)6] Prussian blue analogues (PBA), specifically targeting valine, leucine, and isoleucine, as potential indicators of septicemia. The synthesized nanozyme arrays were thoroughly characterized using various analytical techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscope, and energy-dispersive X-ray. The results confirmed their desirable physical and chemical properties, indicating their suitability for the oxidation of 3,3',5,5'-tetramethylbenzidine serving as a colorimetric probe in the presence of a persulfate oxidizing agent, further highlighting the potential of these arrays for sensitive and accurate detection applications. The MITiO2 shell selectively captures valine, leucine, and isoleucine, partially blocking the cavities for substrate access and thereby hindering the catalyzed TMB chromogenic reaction. The nanozyme array demonstrated excellent performance with linear detection ranges of 5 μM to 1 mM, 10-450 μM, and 10-450 μM for valine, leucine, and isoleucine, respectively. Notably, the corresponding limit of detection values were 0.69, 1.46, and 2.76 μM, respectively. The colorimetric assay exhibited outstanding selectivity, reproducibility, and performance in the detection of analytes in blood samples, including C-reactive protein at a concentration of 61 mg/L, procalcitonin at 870 ng/dL, and the presence of Pseudomonas aeruginosa bacteria. The utilization of Ce[Fe(CN)6]-derived MITiO2-Fe-CeO2 nanozyme arrays holds considerable potential in the field of septicemia detection. This approach offers a sensitive and specific method for early diagnosis and intervention, thereby contributing to improved patient outcomes.
Collapse
Affiliation(s)
- Kheibar Dashtian
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Fatemeh Afshar Gheshlaghi
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Rouholah Zare-Dorabei
- Research Laboratory of Spectrometry & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran 1417653761, Iran
| |
Collapse
|
4
|
Sun H, Zhong H, Chen X, Gan Y, Wang W, Zhou C, Lin C. New modes of converting chemical information with colloidal photonic crystal sensing units. Talanta 2024; 267:125154. [PMID: 37690421 DOI: 10.1016/j.talanta.2023.125154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Photonic crystal is a kind of device which can convert a chemical signal into an optical signal and is commonly used in sensing and detection. The maximum reflection wavelength representing the photonic band gap has been the most common converting mode in analytical usage which however discard too much valuable chemical information. In this work, we established two additional modes for mining chemical information more deeply in time and space as the sensing information to distinguish analytes. They are respectively based on dynamic analysis of the spectrum shift and the distinction of the RGB partition block value information of optical image. The molecular imprinting sensing mechanism worked well on three organophosphorus compounds to the detection limit of 10-4 M. The principle component analysis of above data did present a good discrimination of organophosphorus analytes from interfering counter anions to a low detection limit of 10-6 M. To make the detection more convenient and to achieve real-time on-site detection, we have designed the portable photonic crystal signal acquisition kit. Together with the mobile terminal, the kit connects the optical image collected on site, the algorithm working on the cloud and the input/output interactive interface of users in detection. The methods were constructed on an example made of a three-dimensional molecularly imprinted photonic crystal hydrogels sensing unit targeting on organo-phosphides.
Collapse
Affiliation(s)
- Hualong Sun
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Hantao Zhong
- School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Xiaping Chen
- Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yumeng Gan
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Weiguo Wang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Chuan Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Changxu Lin
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Lab for Soft Functional Materials Research, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China; State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen, China.
| |
Collapse
|
5
|
Thenuwara G, Curtin J, Tian F. Advances in Diagnostic Tools and Therapeutic Approaches for Gliomas: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9842. [PMID: 38139688 PMCID: PMC10747598 DOI: 10.3390/s23249842] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Gliomas, a prevalent category of primary malignant brain tumors, pose formidable clinical challenges due to their invasive nature and limited treatment options. The current therapeutic landscape for gliomas is constrained by a "one-size-fits-all" paradigm, significantly restricting treatment efficacy. Despite the implementation of multimodal therapeutic strategies, survival rates remain disheartening. The conventional treatment approach, involving surgical resection, radiation, and chemotherapy, grapples with substantial limitations, particularly in addressing the invasive nature of gliomas. Conventional diagnostic tools, including computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET), play pivotal roles in outlining tumor characteristics. However, they face limitations, such as poor biological specificity and challenges in distinguishing active tumor regions. The ongoing development of diagnostic tools and therapeutic approaches represents a multifaceted and promising frontier in the battle against this challenging brain tumor. The aim of this comprehensive review is to address recent advances in diagnostic tools and therapeutic approaches for gliomas. These innovations aim to minimize invasiveness while enabling the precise, multimodal targeting of localized gliomas. Researchers are actively developing new diagnostic tools, such as colorimetric techniques, electrochemical biosensors, optical coherence tomography, reflectometric interference spectroscopy, surface-enhanced Raman spectroscopy, and optical biosensors. These tools aim to regulate tumor progression and develop precise treatment methods for gliomas. Recent technological advancements, coupled with bioelectronic sensors, open avenues for new therapeutic modalities, minimizing invasiveness and enabling multimodal targeting with unprecedented precision. The next generation of multimodal therapeutic strategies holds potential for precision medicine, aiding the early detection and effective management of solid brain tumors. These innovations offer promise in adopting precision medicine methodologies, enabling early disease detection, and improving solid brain tumor management. This review comprehensively recognizes the critical role of pioneering therapeutic interventions, holding significant potential to revolutionize brain tumor therapeutics.
Collapse
Affiliation(s)
- Gayathree Thenuwara
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
- Institute of Biochemistry, Molecular Biology, and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - James Curtin
- Faculty of Engineering and Built Environment, Technological University Dublin, Bolton Street, D01 K822 Dublin, Ireland;
| | - Furong Tian
- School of Food Science and Environmental Health, Technological University Dublin, Grangegorman Lower, D07 H6K8 Dublin, Ireland;
| |
Collapse
|
6
|
Zhao J, Cai X, Zhang X, Zhang J, Fan J, Ma F, Zhu W, Jia X, Wang S, Meng Z. Hazardous Gases-Responsive Photonic Crystals Cryogenic Sensors Based on Antifreezing and Water Retention Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42046-42055. [PMID: 37622170 DOI: 10.1021/acsami.3c06443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nowadays, the sensing of hazardous gases is urgent for the consideration of public safety and human health, especially in extreme conditions of low temperatures. In this study, a photonic crystals (PhCs) sensor with water retention and antifreezing properties was developed and applied to visual hazardous gases sensing at low temperature, passively. The sensor was prepared by dip-coating with poly(methyl methacrylate) (PMMA) colloidal microspheres followed by embedding in k-carrageenan/polyacrylamide-ethylene glycol (k-CA/PAM-EG) hydrogel. The sensor responded to hazardous gases, including ammonia, toluene, xylene, acetone, methanol, ethanol, and 1-propanol, with a change in the reflection wavelength and visible structural color. At room temperature, the reflection wavelength of the sensor blue-shifted 49 nm in ammonia, and the structural color changed from red to yellow. For low temperatures, the sensor showed great water retention and antifreezing properties even at -57 °C due to the double network. The sensor still had a great response to hazardous gases after freezing at -20 °C for 12 h and testing at 0 °C, and the obtained results were similar to those at room temperature. Based on this excellent stability and visual sensing at low temperature, the sensor demonstrates the potential for detection of hazardous vapors in extreme environments.
Collapse
Affiliation(s)
- Jiang Zhao
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaolu Cai
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaojing Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang, Henan Province 471039, China
| | - Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jing Fan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Feng Ma
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wei Zhu
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiyu Jia
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Shushan Wang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China
| |
Collapse
|
7
|
Wang S, Xu S, Zhou Q, Liu Z, Xu Z. State-of-the-art molecular imprinted colorimetric sensors and their on-site inspecting applications. J Sep Sci 2023:e2201059. [PMID: 36842066 DOI: 10.1002/jssc.202201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Molecular imprinted colorimetric sensors can realize visual semi-quantitative analysis without the use of any equipment. With the advantages of low cost, fast response, ease of handling, and excellent recognition ability, the molecular imprinted colorimetric sensor shows great application potential in the field of sample rapid assay. Molecular imprinted colorimetric sensors can be prepared in various forms to meet the needs of different sample determination, such as film, hydrogel, strip, and adsorption coating. In this review, the preparation methods for various types of molecularly imprinted colorimetric sensors are systematically introduced. Their applications in the field of on-site biological sample detection, drug detection, disease treatment, chiral substance detection and separation, environmental analysis, and food safety detection are introduced. The limitations encountered in the practical application are presented, and the future development directions prospect.
Collapse
Affiliation(s)
- Sitao Wang
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Shufang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Qingqing Zhou
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Zhimin Liu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| | - Zhigang Xu
- Faculty of Science, Kunming University of Science and Technology, Kunming, P. R. China
| |
Collapse
|
8
|
Barik P, Pradhan M. Selectivity in trace gas sensing: recent developments, challenges, and future perspectives. Analyst 2022; 147:1024-1054. [DOI: 10.1039/d1an02070f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Selectivity is one of the most crucial figures of merit in trace gas sensing, and thus a comprehensive assessment is necessary to have a clear picture of sensitivity, selectivity, and their interrelations in terms of quantitative and qualitative views.
Collapse
Affiliation(s)
- Puspendu Barik
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
| | - Manik Pradhan
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
- Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata – 700106, India
| |
Collapse
|