1
|
Li X, Hu N, Li Y, Tang H, Huang X, Yang T, Xu J. Integrated ultrastructural, physiological, transcriptomic, and metabolomic analysis uncovers the mechanisms by which nicotinamide alleviates cadmium toxicity in Pistia stratiotes L. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133702. [PMID: 38330649 DOI: 10.1016/j.jhazmat.2024.133702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Exogenous nicotinamide (NIC) is a promising solution to relieve heavy metal (HM) toxicity in plants. Nonetheless, the underlying mechanisms involved remain poorly understood. As NIC addition (200 μM) can increase the tolerance of Pistia stratiotes L. to Cd stress (10 mg L-1), this strategy was subjected to integrated ultrastructural, physiological, transcriptomic, and metabolomic analysis to reveal the mechanisms involved. Exogenous NIC initiated a series of physiological, transcriptional, and metabolic responses that alleviated Cd damage. NIC addition improved Cd transfer from roots to leaves and reduced Cd damage in roots. The transported Cd to leaves did not induce further toxicity because it was abundantly compartmentalised in cell walls, which might be mediated by lignin synthesis. Moreover, NIC addition improved the repair of photosystem II in leaves under Cd stress by inducing key genes (e.g., chlorophyll A-B binding protein and PSII repair protein encoding genes), resulting in the restoration of Fv/Fm. In addition, antioxidant enzyme activities (e.g., peroxidase and catalase) and synthesis of antioxidants (e.g., stachydrine and curculigoside) were triggered to overcome oxidative stress. Our work paves the way for a deeper understanding of the mechanisms by which NIC alleviates HM toxicity in plants, providing a basis for improving phytoremediation.
Collapse
Affiliation(s)
- Xiong Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Na Hu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Yanshuang Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; School of Ecology and Environment, Yunnan University, Kunming 650500, China
| | - Haisheng Tang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; School of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Xumei Huang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; School of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Ting Yang
- Service Center for Experimental Biotechnology, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianchu Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China.
| |
Collapse
|
2
|
Comparative analysis of infrared and electrochemical fingerprints of different medicinal parts of Eucommia ulmoides Oliver. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
3
|
Zheng Y, Mao S, Zhu J, Fu L, Moghadam M. A scientometric study on application of electrochemical sensors for detection of pesticide using graphene-based electrode modifiers. CHEMOSPHERE 2022; 307:136069. [PMID: 35985381 DOI: 10.1016/j.chemosphere.2022.136069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Pesticide testing is an important topic in environmental protection and food safety. The development of green, accurate and reliable pesticide residue detection methods is an important technical support for implementing of agricultural quality supervision. Electrochemical sensors are a very promising analytical method for pesticide detection due to their high sensitivity, speed, low cost and portability. Performance enhancement of electrochemical sensors is often accompanied by research advances in materials science. Among them, carbon material is a very important electrode material for the fabrication of electrochemical sensors. The discovery of graphene makes it the most promising candidate among carbon materials for sensor performance enhancement. The topic of this review is the use of graphene-modified electrochemical sensors for pesticide detection in the last decade. Traditional literature summaries and bibliometric analyses were used for an in-depth analysis of this topic. In addition to the introduction of different sensor types and performance comparisons, this review also parses the authors' country, keywords and publication frequency. The related research experienced rapid growth several years ago and has now reached a relatively stable stage. We also discuss the perspectives on this topic.
Collapse
Affiliation(s)
- Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, 210014, China
| | - Shuduan Mao
- Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310021, PR China.
| | - Jiangwei Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Majid Moghadam
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| |
Collapse
|
4
|
Li X, Li B, Zheng Y, Luo L, Qin X, Yang Y, Xu J. Physiological and rhizospheric response characteristics to cadmium of a newly identified cadmium accumulator Coreopsis grandiflora Hogg. (Asteraceae). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113739. [PMID: 35714481 DOI: 10.1016/j.ecoenv.2022.113739] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Screening for superior cadmium (Cd) phytoremediation resources and uncovering the mechanisms of plant response to Cd are important for effective phytoremediation of Cd-polluted soils. In this study, the characteristics of Coreopsis grandiflora related to Cd tolerance and accumulation were analyzed to evaluate its Cd phytoremediation potential. The results revealed that C. grandiflora can tolerate up to 20 mg kg-1 of Cd in the soil. This species showed relatively high shoot bioconcentration factors (1.09-1.85) and translocation factors (0.46-0.97) when grown in soils spiked with 5-45 mg kg-1 Cd, suggesting that C. grandiflora is a Cd accumulator and can potentially be used for Cd phytoextraction. Physiological analysis indicated that antioxidant enzymes (i.e., superoxide dismutase, peroxidase, and catalase) and various free amino acids (e.g., proline, histidine, and methionine) participate in Cd detoxification in C. grandiflora grown in soil spiked with 20 mg kg-1 of Cd (Cd20). The overall microbial richness and diversity remained similar between the control (Cd0) and Cd20 soils. However, the abundance of multiple rhizospheric microbial taxa was altered in the Cd20 soil compared with that in the Cd0 soil. Interestingly, many plant growth-promoting microorganisms (e.g., Nocardioides, Flavisolibacter, Rhizobium, Achromobacter, and Penicillium) enriched in the Cd20 soil likely contributed to the growth and vitality of C. grandiflora under Cd stress. Among these, some microorganisms (e.g., Rhizobium, Achromobacter, and Penicillium) likely affected Cd uptake by C. grandiflora. These abundant plant growth-promoting microorganisms potentially interacted with soil pH and the concentrations of Cd and AK in soil. Notably, potassium-solubilizing microbes (e.g., Rhizobium and Penicillium) may effectively solubilize potassium to assist Cd uptake by C. grandiflora. This study provides a new plant resource for Cd phytoextraction and improves our understanding of rhizosphere-associated mechanisms of plant adaptation to Cd-contaminated soil.
Collapse
Affiliation(s)
- Xiong Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China.
| | - Boqun Li
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yan Zheng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Landi Luo
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
| | - Xiangshi Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yongping Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna 666303, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| |
Collapse
|
5
|
Li J, Wu C, Yuan C, Shi Z, Zhang K, Zou Z, Xiong L, Chen J, Jiang Y, Sun W, Tang K, Yang H, Li CM. Single-Atom Iron Anchored on 2-D Graphene Carbon to Realize Bridge-Adsorption of O-O as Biomimetic Enzyme for Remarkably Sensitive Electrochemical Detection of H 2O 2. Anal Chem 2022; 94:14109-14117. [PMID: 35727990 DOI: 10.1021/acs.analchem.2c01001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-atom catalysis is mainly focused on its dispersed high-density catalytic sites, but delicate designs to realize a unique catalysis mechanism in terms of target reactions have been much less investigated. Herein an iron single atomic site catalyst anchored on 2-D N-doping graphene (Fe-SASC/G) was synthesized and further employed as a biomimetic sensor to electrochemically detect hydrogen peroxide, showing an extremely high sensitivity of 3214.28 μA mM-1 cm-2, which is much higher than that (6.5 μA mM-1 cm-2) of its dispersed on 1-D carbon nanowires (Fe-SASC/NW), ranking the best sensitivity among all reported Fe based catalyst at present. The sensor was also used to successfully in situ monitor H2O2 released from A549 living cells. The mechanism was further systematically investigated. Results interestingly indicate that the distance between adjacent single Fe atomic catalytic sites on 2-D graphene of Fe-SASC/G matches statistically well with the outer length of bioxygen of H2O2 to promote a bridge adsorption of -O-O- for simultaneous 2-electron transfer, while the single Fe atoms anchored on distant 1-D nanowires in Fe-SASC/NW only allow an end-adsorption of oxygen atoms for 1-electron transfer. These results demonstrate that Fe-SASC/G holds great promise as an advanced electrode material in selective and sensitive biomimetic sensor and other electrocatalytic applications, while offering scientific insights in deeper single atomic catalysis mechanisms, especially the effects of substrate dimensions on the mechanism.
Collapse
Affiliation(s)
- Juan Li
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chao Wu
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Chengsong Yuan
- Chongqing Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 40038, China
| | - Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Kaiyue Zhang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Zhuo Zou
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Lulu Xiong
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Jie Chen
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Yali Jiang
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, PR China
| | - Kanglai Tang
- Chongqing Sports Medicine Center, Department of Orthopedic Surgery, Southwest Hospital, The Third Military Medical University, Chongqing 40038, China
| | - Hongbin Yang
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China
| | - Chang Ming Li
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.,Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China.,Institute of Advanced Cross-field Science, College of Life Science, Qingdao University, Qingdao 200671, China
| |
Collapse
|
6
|
Yu M, Liu M, Li Y. Point-of-Care Based Electrochemical Immunoassay for Epstein-Barr Virus Detection. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5711384. [PMID: 35677726 PMCID: PMC9170392 DOI: 10.1155/2022/5711384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 05/10/2023]
Abstract
This work describes a label-free electrochemical immunosensor for the sensing of Epstein-Barr virus (EBV) with high sensitivity. First, a monolayer of 1,6-hexanedithiol (HDT) was fabricated on the screen-printed electrode surface by the interaction between sulfur atoms and SPE. AuNPs can be modified on the electrode by the Au-S bond formed between the HDT-free group and Au atom in AuNPs. Protein A is then adsorbed onto AuNPs. Several parameters were optimized. The optimum concentration of protein A is 0.6 mg/mL. The optimum immobilization time for protein A is 90 min. The optimum concentration of antibody is 80 μg/mL. The optimum immobilization time for antibody is 90 min. Directional immobilization of EBV antibody is achieved by high affinity binding of protein A to the Fc segment of antibody. When antigen specifically binds to antibody, the formation of immune complexes blocks electron transfer of [Fe(CN)6]4-/3- and is reflected in the detection of cyclic voltammetry/electrochemical impedance spectroscopy. The detection range is 1 pg/mL-l00 ng/mL with a LOD of 0.1 pg/mL. In addition, the proposed sensor exhibited an excellent antiinterference property.
Collapse
Affiliation(s)
- Miao Yu
- Department of Otorhinolaryngology, The First Hospital of China Medical University, No. 155 Nnajing Street Heping District, Shenyang 110000, Liaoning Province, China
| | - Ming Liu
- Logistics Support Department, Shengjing Hospital of China Medical University, No. 36 Sanhao Street Heping District, Shenyang 110000, Liaoning Province, China
| | - Yuan Li
- Department of Ophthalmology, The First Hospital of China Medical University, No. 155 Nnajing Street Heping District, Shenyang 110000, Liaoning Province, China
| |
Collapse
|
7
|
Zhou Q, Liu K, Li X, Gu Y, Zheng Y, Fan B, Wu W. Voltammetric Electrochemical Sensor for Phylogenetic Study in Acer Linn. BIOSENSORS 2021; 11:323. [PMID: 34562913 PMCID: PMC8467498 DOI: 10.3390/bios11090323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 11/16/2022]
Abstract
Acer Linn. is a highly divergent species morphology in the maple family (Aceraceae). It is one of the genera facing a very difficult taxonomic situation. The phylogeny of the genus and the taxonomic system under the genus remain unclear. The use of electrochemical fingerprints for plant phylogenetic study is an emerging application in biosensors. In this work, leaves of 18 species of Acer Linn. with an exo-taxa were selected for electrochemical fingerprint recording. Two different conditions were used for improving the data abundance. The fingerprint of all species showed a series of oxidation peaks. These peaks can be ascribed to the oxidation of flavonols, phenolic acids, procyanidins, alkaloids, and pigments in plant tissue. These electrochemical fingerprints can be used for the identification of plant species. We also performed a phylogenetic study with data from electrochemical fingerprinting. The phylogenetic tree of Acer is divided into three main clades. The result is in full agreement with A. shangszeense var. anfuense, A. pictum subsp. mono, A. amplum, A. truncatum, and A. miaotaiense, belonging to the subsection Platanoidea. A. nikoense and A. griseum were clustered together in the dendrogram. Another group that fits the traditional classification results is in the subsection Integrifolia.
Collapse
Affiliation(s)
- Qingwei Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Q.Z.); (X.L.); (B.F.)
- School of Environment Science and Spatial Informatics, Xuzhou Campus, China University of Mining and Technology, Xuzhou 221116, China
- Zhejiang Huachuan Industrial Group Co., Ltd., Yiwu 322003, China
| | - Kewei Liu
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.G.); (Y.Z.)
| | - Xiaolong Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Q.Z.); (X.L.); (B.F.)
| | - Yonghua Gu
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.G.); (Y.Z.)
| | - Yuhong Zheng
- Institute of Botany, Jiangsu Province & Chinese Academy of Sciences (Nanjing Botanical Garden, Mem. Sun Yat-Sen), Nanjing 210014, China; (Y.G.); (Y.Z.)
| | - Boyuan Fan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Q.Z.); (X.L.); (B.F.)
| | - Weihong Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (Q.Z.); (X.L.); (B.F.)
| |
Collapse
|
8
|
Xu Z, Peng M, Zhang Z, Zeng H, Shi R, Ma X, Wang L, Liao B. Graphene-Assisted Electrochemical Sensor for Detection of Pancreatic Cancer Markers. Front Chem 2021; 9:733371. [PMID: 34490213 PMCID: PMC8416602 DOI: 10.3389/fchem.2021.733371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/18/2022] Open
Abstract
Pancreatic cancer is a highly lethal gastrointestinal malignancy. Most patients are already in the middle to advanced stages of pancreatic cancer at the time of diagnosis and cannot be treated completely. As a single-atom planar two-dimensional crystal, graphene's unusual electronic structure, specific electronic properties and excellent electron transport capacity make it uniquely advantageous in the field of electrochemical sensing. In this mini-review, we summarize the potential application of graphene in pancreatic cancer detection. K-Ras gene, CEA and MicroRNA are important in the early diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Zhenglei Xu
- Department of Gastroenterology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Minsi Peng
- Department of Gastroenterology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Zhuliang Zhang
- Department of Gastroenterology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Haotian Zeng
- Department of Gastroenterology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Ruiyue Shi
- Department of Gastroenterology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Xiaoxin Ma
- Department of Gastroenterology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Lisheng Wang
- Department of Gastroenterology, The Second Clinical Medical College, Shenzhen People’s Hospital, Jinan University, Shenzhen, China
| | - Bihong Liao
- Department of Cardiology, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|