1
|
Shah TA, Alam A, Zainab, Khan M, Elhenawy AA, Tajuddin AM, Ayaz M, Said M, Shah SAA, Khan A, Latif A, Ali M, Al-Harrasi A, Ahmad M. Copper(II) complexes of 2-hydroxy-1-naphthaldehyde Schiff bases: synthesis, in vitro activity and computational studies. Future Med Chem 2025; 17:313-328. [PMID: 39882766 PMCID: PMC11792854 DOI: 10.1080/17568919.2025.2458452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Due to the divers biological applications of Cu(II) complexes, we in this study reports the various Cu(II) complexes. The study aims to synthesize and assess new Cu(II) complexes as powerful β-glucuronidase inhibitors. METHODS Five Schiff base ligands and their complexes were synthesized, characterized, and screened against β-glucuronidase inhibitory activity. RESULTS In the series, compounds 3e, 3c, 2b, and 2c ascribed powerful inhibition ranging from (IC50 = 3.0 ± 0.7 µM) to (IC50 = 19.2 ± 0.8 µM). A precise and particular arrangement of atoms is suggested by the triclinic p-1 space group and the existence of a single molecule in an asymmetric unit, which are indispensable for the reactivity as well as the stability of the compounds. The analysis of the Hirshfeld surface provides information about the hydrogen intermolecular and π-π interactions. Based on molecular docking, binding potency increasing by complexation 3a-e compared to ligands 2a-e as well as reference Saccharic acid and uronic isofagomine inhibitor, suggesting that it may be a potent inhibitor of these receptors. CONCLUSION The work recognizes latent active compounds for novel β-glucoronidase inhibitors, by further support these may be harnessed for the development of potent drugs.
Collapse
Affiliation(s)
- Tanzeela Ahmad Shah
- Department of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Aftab Alam
- Department of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Zainab
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, China
| | - Majid Khan
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Baha University, Al-Bahah, Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | - Amalina Mohd Tajuddin
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
| | - Muhammad Ayaz
- Department of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Said
- Department of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Syed Adnan Ali Shah
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC, Sultanate of Oman
- Department of Chemical and Biological Engineering, College of Engineering, Korea University, Seongbuk, Seoul, Republic of Korea
| | - Abdul Latif
- Department of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, PC, Sultanate of Oman
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Shumi G, Demissie TB, Koobotse M, Kenasa G, Beas IN, Zachariah M, Desalegn T. Cytotoxic Cu(II) Complexes with a Novel Quinoline Derivative Ligand: Synthesis, Molecular Docking, and Biological Activity Analysis. ACS OMEGA 2024; 9:25014-25026. [PMID: 38882155 PMCID: PMC11171097 DOI: 10.1021/acsomega.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024]
Abstract
The utilization of metallodrugs as a viable alternative to organic molecules has gained significant attention in modern medicine. We hereby report synthesis of new imine quinoline ligand (IQL)-based Cu(II) complexes and evaluation of their potential biological applications. Syntheses of the ligand and complexes were achieved by condensation of 7-chloro-2-hydroxyquinoline-3-carbaldehyde and 2,2'-thiodianiline, followed by complexation with Cu(II) metal ions. The synthesized ligand and complexes were characterized using UV-vis spectroscopy, TGA/DTA, FTIR spectroscopy, 1H and 13C NMR spectroscopy, and pXRD. The pXRD diffractogram analysis revealed that the synthesized ligand and its complexes were polycrystalline systems, with nanolevel average crystallite sizes of 13.28, 31.47, and 11.57 nm for IQL, CuL, and CuL 2 , respectively. The molar conductivity confirmed the nonelectrolyte nature of the Cu(II) complexes. The biological activity of the synthesized ligand and its Cu(II) complexes was evaluated with in vitro assays, to examine anticancer activity against the MCF-7 human breast cancer cell line and antibacterial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains. The CuL complex had the highest cytotoxic potency against MCF-7 breast cancer cells, with an IC50 of 43.82 ± 2.351 μg/mL. At 100 μg/mL, CuL induced the largest reduction of cancer cell proliferation by 97%, whereas IQL reduced cell proliferation by 53% and CuL 2 by 28%. The minimum inhibitory concentration for CuL was found to be 12.5 μg/mL against the three tested pathogens. Evaluation of antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl revealed that CuL exhibited the highest antioxidant activity with IC50 of 153.3 ± 1.02 μg/mL. Molecular docking results showed strong binding affinities of CuL to active sites of S. aureus, E. coli, and estrogen receptor alpha, indicating its high biological activity compared to IQL and CuL 2 .
Collapse
Affiliation(s)
- Gemechu Shumi
- School of Applied Natural Science, Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| | - Taye B Demissie
- Department of Chemistry, University of Botswana, Gaborone P/Bag 00704, Botswana
| | - Moses Koobotse
- School of Allied Health Professions, University of Botswana, Gaborone P/Bag UB 0022, Botswana
| | - Girmaye Kenasa
- Department of Biology, College of Natural and Computational Science, Wollega University, P.O. Box: 395, Nekemte 251, Ethiopia
| | - Isaac N Beas
- Botswana Institute for Technology Research and Innovation, Maranyane House, Plot No. 50654, Machel Drive, Gaborone Private Bag 0082, Botswana
- Department of Chemical Engineering, University of South Africa, P/Bag X6, Florida, Johannesburg 1710, South Africa
| | - Matshediso Zachariah
- School of Allied Health Professions, University of Botswana, Gaborone P/Bag UB 0022, Botswana
| | - Tegene Desalegn
- School of Applied Natural Science, Department of Applied Chemistry, Adama Science and Technology University, Adama 1888, Ethiopia
| |
Collapse
|
3
|
Abdolmaleki S, Aliabadi A, Khaksar S. Unveiling the promising anticancer effect of copper-based compounds: a comprehensive review. J Cancer Res Clin Oncol 2024; 150:213. [PMID: 38662225 PMCID: PMC11045632 DOI: 10.1007/s00432-024-05641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/03/2024] [Indexed: 04/26/2024]
Abstract
Copper is a necessary micronutrient for maintaining the well-being of the human body. The biological activity of organic ligands, especially their anticancer activity, is often enhanced when they coordinate with copper(I) and (II) ions. Copper and its compounds are capable of inducing tumor cell death through various mechanisms of action, including activation of apoptosis signaling pathways by reactive oxygen species (ROS), inhibition of angiogenesis, induction of cuproptosis, and paraptosis. Some of the copper complexes are currently being evaluated in clinical trials for their ability to map tumor hypoxia in various cancers, including locally advanced rectal cancer and bulky tumors. Several studies have shown that copper nanoparticles can be used as effective agents in chemodynamic therapy, phototherapy, hyperthermia, and immunotherapy. Despite the promising anticancer activity of copper-based compounds, their use in clinical trials is subject to certain limitations. Elevated copper concentrations may promote tumor growth, angiogenesis, and metastasis by affecting cellular processes.
Collapse
Affiliation(s)
- Sara Abdolmaleki
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Samad Khaksar
- Department of Pharmaceutical Chemistry, School of Science and Technology, The University of Georgia, Tbilisi, Georgia.
| |
Collapse
|
4
|
Alem MB, Desalegn T, Damena T, Alemayehu Bayle E, Koobotse MO, Ngwira KJ, Ombito JO, Zachariah M, Demissie TB. Cytotoxicity and Antibacterial Potentials of Mixed Ligand Cu(II) and Zn(II) Complexes: A Combined Experimental and Computational Study. ACS OMEGA 2023; 8:13421-13434. [PMID: 37065050 PMCID: PMC10099420 DOI: 10.1021/acsomega.3c00916] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
[Cu(C15H9O4)(C12H8N2)O2C2H3]·3H2O (1) and [Zn(C15H9O4)(C12H8N2)]O2C2H3 (2) have been synthesized and characterized by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, mass spectrometry, thermogravimetric analysis/differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), and molar conductance, and supported by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. Square pyramidal and tetrahedral geometries are proposed for Cu(II) and Zn(II) complexes, respectively, and the XRD patterns showed the polycrystalline nature of the complexes. Furthermore, in vitro cytotoxic activity of the complexes was evaluated against the human breast cancer cell line (MCF-7). A Cu(II) centered complex with an IC50 value of 4.09 μM was more effective than the Zn(II) centered complex and positive control, cisplatin, which displayed IC50 values of 75.78 and 18.62 μM, respectively. In addition, the newly synthesized complexes experienced the innate antioxidant nature of the metal centers for scavenging the DPPH free radical (up to 81% at 400 ppm). The biological significance of the metal complexes was inferred from the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy band gap, which was found to be 2.784 and 3.333 eV, respectively for 1 and 2, compared to the ligands, 1,10-phenathroline (4.755 eV) and chrysin (4.403 eV). Moreover, the molecular docking simulations against estrogen receptor alpha (ERα; PDB: 5GS4) were strongly associated with the in vitro biological activity results (E B and K i are -8.35 kcal/mol and 0.76 μM for 1, -7.52 kcal/mol and 3.07 μM for 2, and -6.32 kcal/mol and 23.42 μM for cisplatin). However, more research on in vivo cytotoxicity is suggested to confirm the promising cytotoxicity results.
Collapse
Affiliation(s)
- Mamaru Bitew Alem
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O.Box 1888, Adama 251, Ethiopia
| | - Tegene Desalegn
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O.Box 1888, Adama 251, Ethiopia
| | - Tadewos Damena
- Department
of Chemistry, Wachemo University, P.O.Box 667, Hossana 667, Ethiopia
| | - Enyew Alemayehu Bayle
- Graduate
Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 10607 Taipei, Taiwan
- Department
of Chemistry, Debre Markos University, P.O. Box 269, Debre Markos 269, Ethiopia
| | - Moses O. Koobotse
- School
of Allied Health Professions, University
of Botswana, P/bag UB, 0022 Gaborone, Botswana
| | - Kennedy J. Ngwira
- Molecular
Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits, 2050 Johannesburg, South Africa
| | - Japheth O. Ombito
- Department
of Chemistry, University of Botswana, P/bag UB, 0022 Gaborone, Botswana
| | - Matshediso Zachariah
- School
of Allied Health Professions, University
of Botswana, P/bag UB, 0022 Gaborone, Botswana
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, P/bag UB, 0022 Gaborone, Botswana
| |
Collapse
|
5
|
Alem MB, Desalegn T, Damena T, Bayle EA, Koobotse MO, Ngwira KJ, Ombito JO, Zachariah M, Demissie TB. Organic-inorganic hybrid salt and mixed ligand Cr(III) complexes containing the natural flavonoid chrysin: Synthesis, characterization, computational, and biological studies. Front Chem 2023; 11:1173604. [PMID: 37123873 PMCID: PMC10130586 DOI: 10.3389/fchem.2023.1173604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Organic-inorganic hybrid salt and mixed ligand Cr(III) complexes (Cr1 and Cr2) containing the natural flavonoid chrysin were synthesized. The metal complexes were characterized using UV-Vis, Fourier-transform infrared, MS, SEM-EDX, XRD, and molar conductance measurements. Based on experimental and DFT/TD-DFT calculations, octahedral geometries for the synthesized complexes were suggested. The powder XRD analysis confirms that the synthesized complexes were polycrystalline, with orthorhombic and monoclinic crystal systems having average crystallite sizes of 21.453 and 19.600 nm, percent crystallinities of 51% and 31.37%, and dislocation densities of 2.324 × 10-3 and 2.603 × 10-3 nm-2 for Cr1 and Cr2, respectively. The complexes were subjected to cytotoxicity, antibacterial, and antioxidant studies. The in vitro biological studies were supported with quantum chemical and molecular docking computational studies. Cr1 showed significant cytotoxicity to the MCF-7 cell line, with an IC50 value of 8.08 μM compared to 30.85 μM for Cr2 and 18.62 μM for cisplatin. Cr2 showed better antibacterial activity than Cr1. The higher E HOMO (-5.959 eV) and dipole moment (10.838 Debye) values of Cr2 obtained from the quantum chemical calculations support the observed in vitro antibacterial activities. The overall results indicated that Cr1 is a promising cytotoxic drug candidate.
Collapse
Affiliation(s)
- Mamaru Bitew Alem
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
- *Correspondence: Mamaru Bitew Alem, , Tegene Desalegn, , Taye B. Demissie,
| | - Tegene Desalegn
- Department of Applied Chemistry, Adama Science and Technology University, Adama, Ethiopia
- *Correspondence: Mamaru Bitew Alem, , Tegene Desalegn, , Taye B. Demissie,
| | - Tadewos Damena
- Department of Chemistry, Wachemo University, Hossana, Ethiopia
| | - Enyew Alemayehu Bayle
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
- Department of Chemistry, Debre Markos University, Debre Markos, Ethiopia
| | - Moses O. Koobotse
- School of Allied Health Professions, University of Botswana, Gaborone, Botswana
| | - Kennedy J. Ngwira
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Taye B. Demissie
- Department of Chemistry, University of Botswana, Gaborone, Botswana
- *Correspondence: Mamaru Bitew Alem, , Tegene Desalegn, , Taye B. Demissie,
| |
Collapse
|
6
|
Damena T, Alem MB, Zeleke D, Desalegn T, Eswaramoorthy R, Demissie TB. Synthesis, characterization, and biological activities of zinc(II), copper(II) and nickel(II) complexes of an aminoquinoline derivative. Front Chem 2022; 10:1053532. [DOI: 10.3389/fchem.2022.1053532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Interest is increasingly focused on the use of transition metal complexes as biochemical, medical, analytical, pharmaceutical, agronomic, anticancer, and antibacterial agents. In this study, three complexes of [Zn(H2L)Cl] (1), [Cu(H2L)(H2O)(NO3)] (2) and [Ni(H2L)(NO3)].2H2O (3) were synthesized from a 2-chloroquinoline-3-carbaldehyde derived ligand [H3L = ((E)-2-(((2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethanol. The compounds were characterized using physicochemical and spectroscopic methods. The results demonstrate that the free ligand behaves as a tridentate ligand with one oxygen and two nitrogen (ONN) donor atoms in 1:1 metal:ligand ratio. The formation constants of the complexes were found to be (KZn(II) = 2.3 × 106, KCu(II) = 2.9 × 106, and KNi(II) = 3.8 × 105). The thermodynamic parameters indicated that the reactions were spontaneous with exothermic nature of metal-ligand interaction energies. Based on the analyses of the experimental (EDX, FTIR, PXRD, MS and TGA) and DFT results, a distorted tetrahedral, a distorted square pyramidal and square planar geometry for Zn(II), Cu(II) and Ni(II) complexes, respectively, were proposed. The B3LYP calculated IR frequencies and TD-B3LYP calculated absorption spectra were found to be in good agreement with the corresponding experimental results. The powder XRD data confirmed that the Zn(II), Cu(II) and Ni(II) complexes have polycrystalline nature with average crystallite sizes of 27.86, 33.54, 37.40 Å, respectively. In vitro antibacterial activity analyses of the complexes were studied with disk diffusion method, in which the complexes showed better activity than the precursor ligand. Particularly the Cu(II) complex showed higher percent activity index (62, 90%), than both Zn(II) (54, 82%) and Ni(II) (41, 68%) complexes against both E. coli and P. aeruginosa, respectively. Using the DPPH assay, the complexes were further assessed for their antioxidant capacities. All metal complexes showed improved antioxidant activity than the free ligand. Zn(II) and Cu(II) complexes, which had IC50 values of 10.46 and 8.62 μg/ml, respectively, showed the best antioxidant activity. The calculated results of Lipinski’s rule of five also showed that the target complexes have drug-like molecular nature and similarly, the results of binding mode of action of these compounds against E. coli DNA gyrase B and P. aeruginosa LasR.DNA were found to be in good agreement with the in vitro biological activities.
Collapse
|