1
|
Jung H, Yang HL, Park GB, Kim JM, Park JS. Graphitization of tincone via molecular layer deposition: investigating sulfur's role and structural impacts. Dalton Trans 2025. [PMID: 40195746 DOI: 10.1039/d5dt00529a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
This study investigated the synthesis of sp2 carbons using molecular layer deposition (MLD) with tincone, which utilized tetrakis(dimethylamido)tin (TDMASn) as the metal precursor and 4-mercaptophenol (4MP) as the organic linker. Tincone films were deposited at 100 °C without impurities and then subjected to vacuum post-annealing in a tube furnace to induce graphitization. Compositional and structural analyses revealed significant changes as the annealing temperature increased, including the breakdown of the bonds between Sn, O, S, and C. This process led to the reduction of Sn, O, and S and the formation of sp2 carbons. At 400 °C, the film thickness was reduced by 57.5%, and the refractive index increased from 1.8 to 1.97, as confirmed by the emergence of G-band and 2D-band peaks in the Raman spectra. X-ray photoelectron spectroscopy analysis indicated that the residual Sn content decreased to 0.75% at 600 °C. Interestingly, at temperatures above 400 °C, unique behavior was observed: increased C-S bonding disrupted the graphite structure due to the thiol (-SH) groups in 4MP. This disruption led to a reduction in C-C bonding and a decrease in the G-band peak in the Raman spectra. This study provides the first detailed investigation of the role of S in the graphitization of tincone, highlighting its impact on sp2 carbon formation and emphasizing the importance of the careful selection of precursors and linkers in MLD processes.
Collapse
Affiliation(s)
- Hyolim Jung
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Hae Lin Yang
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Gi-Beom Park
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Ji-Min Kim
- Department of Information Display Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jin-Seong Park
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro Seongdong-gu, Seoul, 04763, Republic of Korea.
- Department of Information Display Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Wu H, Li S, Yu X. Unleashing the Power of Sn 2S 3 Quantum Dots: Advancing Ultrafast and Ultrastable Sodium/Potassium-Ion Batteries with N, S Co-Doped Carbon Fiber Network. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311196. [PMID: 38308074 DOI: 10.1002/smll.202311196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 02/04/2024]
Abstract
Tin sulfide (Sn2S3) has been recognized as a potential anode material for sodium-ion batteries (SIBs) and potassium-ion batteries (PIBs) due to its high theoretical capacities. However, the sluggish ion diffusion kinetics, low conductivity, and severe volume changes during cycling have limited its practical application. In this study, Sn2S3 quantum dots (QDs) (≈1.6 nm) homogeneously embedded in an N, S co-doped carbon fiber network (Sn2S3-CFN) are successfully fabricated by sequential freeze-drying, carbonization, and sulfidation strategies. As anode materials, the Sn2S3-CFN delivers high reversible capacities and excellent rate capability (300.0 mAh g-1 at 10 A g-1 and 250.0 mAh g-1 at 20 A g-1 for SIBs; 165.3 mAh g-1 at 5 A g-1 and 100.0 mAh g-1 at 10 A g-1 for PIBs) and superior long-life cycling capability (279.6 mAh g-1 after 10 000 cycles at 5 A g-1 for SIBs; 166.3 mAh g-1 after 5 000 cycles at 2 A g-1 for PIBs). According to experimental analysis and theoretical calculations, the exceptional performance of the Sn2S3-CFN composite can be attributed to the synergistic effect of the conductive carbon fiber network and the Sn2S3 quantum dots, which contribute to the structural stability, reversible electrochemical reactions, and superior electron transportation and ions diffusion.
Collapse
Affiliation(s)
- Hui Wu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Shuang Li
- Department of Materials Science, Fudan University, Shanghai, 200433, China
- Wanxiang A123 Systems Corporation, Hangzhou, 311215, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
3
|
Mishra Y, Chattaraj A, Aljabali AAA, El-Tanani M, Tambuwala MM, Mishra V. Graphene oxide–lithium-ion batteries: inauguration of an era in energy storage technology. CLEAN ENERGY 2024; 8:194-205. [DOI: 10.1093/ce/zkad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Abstract
A significant driving force behind the brisk research on rechargeable batteries, particularly lithium-ion batteries (LiBs) in high-performance applications, is the development of portable devices and electric vehicles. Carbon-based materials, which have finite specific capacity, make up the anodes of LiBs. Many attempts are being made to produce novel nanostructured composite anode materials for LiBs that display cycle stability that is superior to that of graphite using graphene oxide. Therefore, using significant amounts of waste graphene oxide from used LiBs represents a fantastic opportunity to engage in waste management and circular economy. This review outlines recent studies, developments and the current advancement of graphene oxide-based LiBs, including preparation of graphene oxide and utilization in LiBs, particularly from the perspective of energy storage technology, which has drawn more and more attention to creating high-performance electrode systems.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara (Punjab)-144411 , India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University , Phagwara (Punjab)-144411 , India
| | - Alaa AA Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University , Irbid , Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University , UAE
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln , Brayford Pool Campus, Lincoln LN6 7TS, England , UK
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University , Phagwara (Punjab)-144411 , India
| |
Collapse
|
4
|
Tajik S, Shams P, Beitollahi H, Garkani Nejad F. Electrochemical Nanosensor for the Simultaneous Determination of Anticancer Drugs Epirubicin and Topotecan Using UiO-66-NH 2/GO Nanocomposite Modified Electrode. BIOSENSORS 2024; 14:229. [PMID: 38785703 PMCID: PMC11117627 DOI: 10.3390/bios14050229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
In this work, UiO-66-NH2/GO nanocomposite was prepared using a simple solvothermal technique, and its structure and morphology were characterized using field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). An enhanced electrochemical sensor for the detection of epirubicin (EP) was proposed, which utilized a UiO-66-NH2/GO nanocomposite-modified screen-printed graphite electrode (UiO-66-NH2/GO/SPGE). The prepared UiO-66-NH2/GO nanocomposite improved the electrochemical performance of the SPGE towards the redox reaction of EP. Under optimized experimental conditions, this sensor demonstrates a remarkable limit of detection (LOD) of 0.003 µM and a linear dynamic range from 0.008 to 200.0 µM, providing a highly capable platform for sensing EP. Furthermore, the simultaneous electro-catalytic oxidation of EP and topotecan (TP) was investigated at the UiO-66-NH2/GO/SPGE surface utilizing differential pulse voltammetry (DPV). DPV measurements revealed the presence of two distinct oxidation peaks of EP and TP, with a peak potential separation of 200 mV. Finally, the UiO-66-NH2/GO/SPGE sensor was successfully utilized for the quantitative analysis of EP and TP in pharmaceutical injection, yielding highly satisfactory results.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 76169-13555, Iran
| | - Parisa Shams
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran; (H.B.); (F.G.N.)
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 76318-85356, Iran; (H.B.); (F.G.N.)
| |
Collapse
|
5
|
Zhang L, Xie S, Li A, Li Y, Zheng F, Huang Y, Pan Q, Li Q, Wang H. Trimetallic sulfides coated with N-doped carbon nanorods as superior anode for lithium-ion batteries. J Colloid Interface Sci 2024; 655:643-652. [PMID: 37972451 DOI: 10.1016/j.jcis.2023.11.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Metal sulfides have been considered promising anode materials for lithium-ion batteries (LIBs), due to their high capacity. However, the poor cycle stability induced by the sluggish kinetics and poor structural stability hampers their practical application in LIBs. In this work, MoS2/MnS/SnS trimetallic sulfides heterostructure coated with N-doped carbon nanorods (MMSS@NC) is designed through a simple method involving co-precipitation, metal chelate-assisted reaction, and in-situ sulfurization method. In such designed MMSS@NC, a synergetic effect of heterojunctions and carbon layer is simultaneously constructed, which can significantly improve ionic and electronic diffusion kinetics, as well as maintain the structural stability of MMSS@NC during the repeated lithiation/delithiation process. When applied as anode materials for LIBs, the MMSS@NC composite shows superior long-term cycle performance (1145.0 mAh/g after 1100 cycles at 1.0 A/g), as well as excellent rate performance (565.3 mAh/g at 5.0 A/g). This work provides a unique strategy for the construction of multiple metal sulfide anodes for high-performance LIBs.
Collapse
Affiliation(s)
- Lixuan Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Sibing Xie
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Anqi Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Yu Li
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou 545616, China.
| | - Fenghua Zheng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Youguo Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Qichang Pan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China.
| | - Qingyu Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China
| | - Hongqiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Guangxi New Energy Ship Battery Engineering Technology Research Center, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|