1
|
Zhang S, Xu Q, Yuan Q, Yan S, Zhang Y, Li G. Characterization of Chiral Thiophene Multilayer 3D Polymers with AIE Properties for Environmental Monitoring of Chromium Ions. Macromol Rapid Commun 2025:e2500090. [PMID: 40229657 DOI: 10.1002/marc.202500090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/26/2025] [Indexed: 04/16/2025]
Abstract
This study reports the synthesis and characterization of novel thiophene-based multilayer 3D chiral polymers incorporating methoxy and octyloxy functional groups. These polymers exhibit unique fluorescence properties, including a pronounced aggregation-induced emission (AIE) phenomenon at a lower excitation wavelength than previously reported thiophene systems. Additionally, the polymers demonstrate remarkable sensitivity in detecting hexavalent chromium ions (Cr6+), a significant environmental pollutant. The interaction between the chiral polymers and Cr6+ ions leads to measurable changes in fluorescence, highlighting their potential for applications in environmental monitoring and biosensing. Importantly, these polymers are effective in actual environmental water, where they maintain their selectivity for Cr6+ ions despite the presence of competing metal ions. This enhanced selectivity further underscores their suitability for real-world applications. This work contributes to the field of chiral polymers and emphasizes their versatility in advanced sensing applications.
Collapse
Affiliation(s)
- Sai Zhang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 215164, China
| | - Qingzheng Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Qingkai Yuan
- Department of Chemistry, Texas Tech University, Lubbock, TX, 79415, USA
| | - Shenghu Yan
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 215164, China
| | - Yue Zhang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 215164, China
| | - Guigen Li
- Department of Chemistry, Texas Tech University, Lubbock, TX, 79415, USA
| |
Collapse
|
2
|
Wang Y, Xu T, Pandey A, Jin S, Yan JX, Yuan Q, Zhang S, Wang JY, Liang R, Li G. Enantiopure Turbo Chirality Targets in Tri-Propeller Blades: Design, Asymmetric Synthesis, and Computational Analysis. Molecules 2025; 30:603. [PMID: 39942707 PMCID: PMC11819669 DOI: 10.3390/molecules30030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Enantiopure turbo chirality in small organic molecules, without other chiral elements, is a fascinating topic that has garnered significant interest within the chemical and materials science community. However, further research into and application of this concept have been severely limited by the lack of effective asymmetric tools. To date, only a few enantiomers of turbo chiral targets have been isolated, and these were obtained through physical separation using chiral HPLC, typically on milligram scales. In this work, we report the first asymmetric approach to enantiopure turbo chirality in the absence of other chiral elements such as central and axial chirality. This is demonstrated by assembling aromatic phosphine oxides, where three propeller-like groups are anchored to a P(O) center via three axes. Asymmetric induction was successfully carried out using a chiral sulfonimine auxiliary, with absolute configurations and conformations unambiguously determined by X-ray diffraction analysis. The resulting turbo frameworks exhibit three propellers arranged in either a clockwise (P,P,P) or counterclockwise (M,M,M) configuration. In these arrangements, the bulkier sides of the aromatic rings are oriented toward the oxygen atom of the P=O bond rather than in the opposite direction. Additionally, the orientational configuration is controlled by the sulfonimine auxiliary as well, showing that one of the Naph rings is pushed away from the auxiliary group (-CH2-NHSO2-tBu) of the phenyl ring. Computational studies were conducted on relative energies for the rotational barriers of a turbo target along the P=O axis and the transition pathway between two enantiomers, meeting our expectations. This work is expected to have a significant impact on the fields of chemistry, biomedicine, and materials science in the future.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Ankit Pandey
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
| | - Jasmine X. Yan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sai Zhang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou 213164, China; (S.Z.)
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou 213164, China; (S.Z.)
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (Y.W.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
3
|
Rahman AU, Wang Y, Xu T, Reddy KD, Jin S, Yan JX, Yuan Q, Unruh D, Liang R, Li G. Discovery of Staircase Chirality through the Design of Unnatural Amino Acid Derivatives. RESEARCH (WASHINGTON, D.C.) 2024; 7:0550. [PMID: 39703778 PMCID: PMC11658802 DOI: 10.34133/research.0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024]
Abstract
Chirality has garnered significant attention in the scientific community since its discovery by Louis Pasteur over a century ago. It has been showing a profound impact on chemical, biomedical, and materials sciences. Significant progress has been made in controlling molecular chirality, as evidenced by the several Nobel Prizes in chemistry awarded in this area, particularly for advancements in the asymmetric catalytic synthesis of molecules with central and axial chirality. However, the exploration of new types of chirality has been largely stagnant for more than half a century, likely due to the complexity and challenges inherent in this field. In this work, we present the discovery of a novel type of chirality-staircase chirality as inspired by the design and synthesis of unnatural amino acid derivatives. The architecture of staircase chirality is characterized by 2 symmetrical phenyl rings anchored by a naphthyl pier, with the rings asymmetrically displaced due to the influence of chiral auxiliaries at their para positions. This unique staircase chiral framework has been thoroughly characterized using spectroscopic techniques, with its absolute configuration definitively confirmed by x-ray diffraction analysis. Remarkably, one of the staircase molecules exhibits 4 distinct types of chirality: central, orientational, turbo, and staircase chirality, a combination that has not been previously documented in the literature. Computational studies using density functional theory (DFT) calculations were conducted to analyze the relative energies of individual staircase isomers, and the results are in agreement with our experimental findings. We believe that this discovery will open up a new research frontier in asymmetric synthesis and catalysis, with the potential to make a substantial impact on the fields of chemistry, medicine, and materials science.
Collapse
Affiliation(s)
- Anis U. Rahman
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Ting Xu
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Kambham Devendra Reddy
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Jasmine X. Yan
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Daniel Unruh
- Iowa Advanced Technology Laboratories,
University of Iowa, Iowa City, IA 52242, USA
| | - Ruibin Liang
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guigen Li
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
4
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024; 53:11165-11206. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
5
|
Xu T, Wang Y, Jin S, Rahman AU, Yan X, Yuan Q, Liu H, Wang JY, Yan W, Jiao Y, Liang R, Li G. Amino Turbo Chirality and Its Asymmetric Control. RESEARCH (WASHINGTON, D.C.) 2024; 7:0474. [PMID: 39301263 PMCID: PMC11411161 DOI: 10.34133/research.0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
A series of new targets containing 3 chiral elements of central, orientational, and turbo chirality have been designed and synthesized asymmetrically. The absolute configurations and conformations of these types of chirality were concurrently controlled by using chiral sulfonimine auxiliary and unambiguously determined by x-ray diffraction analysis. These targets include alpha unnatural amino acid derivatives, which may play an important role for drug design, discovery, and development. Three propellers of turbo framework are covalently connected to a chiral C(sp3) center via C(sp2)-C(sp3) bonding along with a C-N axis, while one of them is orientated away from the same carbon chiral center. The turbo or propeller chirality is characterized by 2 types of molecular arrangements of propellers, clockwise (PPP) and counterclockwise (MMM), respectively. The turbo stereogenicity was found to depend on the center chirality of sulfonimine auxiliary instead of the chiral C(sp3) center, i.e., (S)- and (R)-sulfinyl centers led to the asymmetric formation of PPP- and MMM-configurations, respectively. Computational studies were conducted on relative energies for rotational barriers of a turbo target along the C-N anchor and the transition pathway between 2 enantiomers meeting our experimental observations. This work is anticipated to have a broad impact on chemical, biomedical, and materials sciences in the future.
Collapse
Affiliation(s)
- Ting Xu
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Anis U. Rahman
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Xianghua Yan
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Hao Liu
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry,
Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenxin Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education,
Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education,
Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Ruibin Liang
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guigen Li
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
6
|
Wang Y, Xu T, Jin S, Wang JY, Yuan Q, Liu H, Tang Y, Zhang S, Yan W, Jiao Y, Li G. Design and Asymmetric Control of Orientational Chirality by Using the Combination of C(sp 2)-C(sp) Levers and Achiral N-Protecting Group. Chemistry 2024; 30:e202400005. [PMID: 38497560 DOI: 10.1002/chem.202400005] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
New chiral targets of orientational chirality have been designed and asymmetrically synthesized by taking advantage of N-sulfinyl imine-directed nucleophilic addition/oxidation, Suzuki-Miyaura, and Sonogashira cross-coupling reactions. Orientation of single isomers has been selectively controlled by using aryl/alkynyl levers [C(sp2)-C(sp) axis] and tBuSO2- protecting group on nitrogen as proven by X-ray diffraction analysis. The key structural characteristic of resulting orientational products is shown by remote through-space blocking manner. Seventeen examples of multi-step synthesis were obtained with modest to good chemical yields and complete orientational selectivity.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Hao Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wenxin Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| |
Collapse
|
7
|
Xu T, Wang JY, Wang Y, Jin S, Tang Y, Zhang S, Yuan Q, Liu H, Yan W, Jiao Y, Yang XL, Li G. C(sp)-C(sp) Lever-Based Targets of Orientational Chirality: Design and Asymmetric Synthesis. Molecules 2024; 29:2274. [PMID: 38792134 PMCID: PMC11123770 DOI: 10.3390/molecules29102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, the design and asymmetric synthesis of a series of chiral targets of orientational chirality were conducted by taking advantage of N-sulfinylimine-assisted nucleophilic addition and modified Sonogashira catalytic coupling systems. Orientational isomers were controlled completely using alkynyl/alkynyl levers [C(sp)-C(sp) axis] with absolute configuration assignment determined by X-ray structural analysis. The key structural element of the resulting orientational chirality is uniquely characterized by remote through-space blocking. Forty examples of multi-step synthesis were performed, with modest to good yields and excellent orientational selectivity. Several chiral orientational amino targets are attached with scaffolds of natural and medicinal products, showing potential pharmaceutical and medical applications in the future.
Collapse
Affiliation(s)
- Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, School of Pharmacy, Changzhou University, Changzhou 213164, China;
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Hao Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Wenxin Yan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (W.Y.); (Y.J.)
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (W.Y.); (Y.J.)
| | - Xiao-Liang Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| |
Collapse
|
8
|
Zhang S, Yuan Q, Li G. New multiple-layered 3D polymers showing aggregation-induced emission and polarization. RSC Adv 2024; 14:13342-13350. [PMID: 38660524 PMCID: PMC11040433 DOI: 10.1039/d4ra02128b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
An exceptional achiral and chiral multilayer 3D polymer has been created and controlled by uniform and distinct aromatic chromophore units that are multiply sandwiched by naphthyl berths. In order to put together this assembly, it was necessary to search for new catalytic Suzuki-Miyaura polycouplings among various catalytic systems, monomers, and catalysts. Gel Permeation Chromatography (GPC) was able to verify the presence of many framework layers. The resulting achiral and chiral polymers displayed notable optical characteristic.
Collapse
Affiliation(s)
- Sai Zhang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University Changzhou Jiangsu 213164 China
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| |
Collapse
|
9
|
Xu J. Recent Advances in π-Stacking Interaction-Controlled Asymmetric Synthesis. Molecules 2024; 29:1454. [PMID: 38611737 PMCID: PMC11012711 DOI: 10.3390/molecules29071454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The π-stacking interaction is one of the most important intramolecular and intermolecular noncovalent interactions in organic chemistry. It plays an important role in stabilizing some structures and transition states in certain reactions via both intramolecular and intermolecular interactions, facilitating different selectivities, such as chemo-, regio-, and stereoselectivities. This minireview focuses on the recent examples of the π-stacking interaction-controlled asymmetric synthesis, including auxiliary-induced asymmetric synthesis, kinetic resolution, asymmetric synthesis of helicenes and heterohelicenes, and multilayer 3D chiral molecules.
Collapse
Affiliation(s)
- Jiaxi Xu
- State Key Laboratory of Chemical Resource Engineering, Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; ; Tel./Fax: +86-10-6443-5565
- College of Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Zhang S, Chen D, Wang JY, Yan S, Li G. Four-layer folding framework: design, GAP synthesis, and aggregation-induced emission. Front Chem 2023; 11:1259609. [PMID: 37638105 PMCID: PMC10450629 DOI: 10.3389/fchem.2023.1259609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
The design and synthesis of a type of [1 + 4 + 2] four-layer framework have been conducted by taking advantage of Suzuki-Miyaura cross-coupling and group-assisted purification (GAP) chemistry. The optimized coupling of double-layer diboronic esters with 1-bromo-naphth-2-yl phosphine oxides resulted in a series of multilayer folding targets, showing a broad scope of substrates and moderate to excellent yields. The final products were purified using group-assisted purification chemistry/technology, achieved simply by washing crude products with 95% EtOH without the use of chromatography and recrystallization. The structures were fully characterized and assigned by performing X-ray crystallographic analysis. UV-vis absorption, photoluminescence (PL), and aggregation-induced emission (AIE) were studied for the resulting multilayer folding products.
Collapse
Affiliation(s)
- Sai Zhang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Daixiang Chen
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Shenghu Yan
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
11
|
Jin S, Xu T, Tang Y, Wang JY, Wang Y, Pan J, Zhang S, Yuan Q, Rahman AU, Aquino AJA, Lischka H, Li G. A new chiral phenomenon of orientational chirality, its synthetic control and computational study. Front Chem 2023; 10:1110240. [PMID: 36688043 PMCID: PMC9850238 DOI: 10.3389/fchem.2022.1110240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
A new type of chirality, orientational chirality, consisting of a tetrahedron center and a remotely anchored blocker, has been discovered. The key structural element of this chirality is characterized by multiple orientations directed by a through-space functional group. The multi-step synthesis of orientational chiral targets was conducted by taking advantage of asymmetric nucleophilic addition, Suzuki-Miyaura cross-coupling and Sonogashira coupling. An unprecedented catalytic species showing a five-membered ring consisting of C (sp2)-Br-Pd-C (sp2) bonds was isolated during performing Suzuki-Miyaura cross-coupling. X-ray diffraction analysis confirmed the species structure and absolute configuration of chiral orientation products. Based on X-ray structures, a model was proposed for the new chirality phenomenon to differentiate the present molecular framework from previous others. DFT computational study presented the relative stability of individual orientatiomers. This discovery would be anticipated to result in a new stereochemistry branch and to have a broad impact on chemical, biomedical, and material sciences in the future.
Collapse
Affiliation(s)
- Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Junyi Pan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Anis Ur Rahman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Adelia J. A. Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States,*Correspondence: Guigen Li, ; Hans Lischka,
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States,*Correspondence: Guigen Li, ; Hans Lischka,
| |
Collapse
|
12
|
Jin S, Wang Y, Tang Y, Wang JY, Xu T, Pan J, Zhang S, Yuan Q, Rahman AU, McDonald JD, Wang GQ, Li S, Li G. Orientational Chirality, Its Asymmetric Control, and Computational Study. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0012. [PMID: 39290963 PMCID: PMC11407581 DOI: 10.34133/research.0012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/27/2022] [Indexed: 09/19/2024]
Abstract
Orientational chirality was discovered and characterized by a C(sp)-C(sp3) axis-anchored chiral center and a remotely anchored blocker. X-ray structural analysis proved that orientatiomers are stabilized by through-space functional groups, making it possible for 1 R- or S-chiral center to exhibit 3 orientational isomers simply by rotating operations. A new model system was proposed, fundamentally different from the traditional Felkin-Ahn-type or Cram-type models. In these traditional models, chiral C(sp3) center and blocking C(sp2) carbons are connected adjacently, and there exist 6 energy barriers during rotating along the C(sp2)-C(sp3) axis. In comparison, the present orientational chirality model shows that a chiral C(sp)-C(sp3) carbon is remotely located from a blocking group. Thus, it is focused on the steric dialog between a chiral C(sp3) center and a remotely anchored functional group. There exist 3 energy barriers for either (R)- or (S)-C(sp)-C(sp3) stereogenicity in the new model. Chiral amide auxiliary was proven to be an excellent chiral auxiliary in controlling rotations of orientatiomers to give complete stereoselectivity. The asymmetric synthesis of individual orientatiomers was conducted via multistep synthesis by taking advantage of the Suzuki-Miyaura cross-coupling and Sonogashira coupling reactions. Density functional theory computational study presented optimized conformers and relative energies for individual orientatiomers. This discovery would be anticipated to result in a new stereochemistry topic and have a broad impact on chemical, biomedical, and material sciences in the future.
Collapse
Affiliation(s)
- Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Jia-Yin Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Junyi Pan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Qiankai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Anis Ur Rahman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - James D McDonald
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guo-Qiang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
13
|
Tang Y, Zhang S, Xu T, Yuan Q, Wang JY, Jin S, Wang Y, Pan J, Griffin I, Chen D, Li G. Aggregation-Induced Polarization (AIP): Optical Rotation Amplification and Adjustment of Chiral Aggregates of Folding Oligomers and Polymers. Front Chem 2022; 10:962638. [PMID: 36034657 PMCID: PMC9413080 DOI: 10.3389/fchem.2022.962638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
The phenomenon of aggregation-induced polarization (AIP) was observed showing optical rotation amplification and adjustment. The relationship between optical rotations of chiral aggregates of multilayered chiral folding oligomers and polymers with water% in THF (fw) has been established accordingly. New multilayered chiral oligomers were synthesized under the asymmetric catalytic systems established by our laboratory recently. These products were well-characterized by UV-vis, NMR, and MALDI-TOF spectra. Absolute stereochemistry (enantio- and diastereochemistry) was assigned by comparison with similar asymmetric induction by the same catalyst in our previous reactions. The present AIP work can serve as a new tool to determine chiral aggregates, especially for those that cannot display emission. AIP would also complement AIE-based CPL since AIP serves as a new tool providing enhanced right- or left-hand polarized lights with individual wavelengths. It will find many applications in chemical and materials science in the future.
Collapse
Affiliation(s)
- Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Ting Xu
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Jia-Yin Wang
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Shengzhou Jin
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yu Wang
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Junyi Pan
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Isaac Griffin
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Daixiang Chen
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, China
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
- Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- *Correspondence: Guigen Li,
| |
Collapse
|