1
|
Zhang YD, Xu H, Ebaid MS, Zhang XJ, Jiang K, Zhang X, Guo Z, Xu BB. Advances in layer manganese dioxide for energy conversion and storage: mechanisms, strategies and prospects. Chem Sci 2025:d5sc00932d. [PMID: 40375867 PMCID: PMC12077372 DOI: 10.1039/d5sc00932d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/17/2025] [Indexed: 05/18/2025] Open
Abstract
Layer manganese dioxide with its special structure, low price and large theoretical specific capacitance/capacity is considered a competitive candidate for various energy conversion and storage devices, such as supercapacitors and batteries (Li-ion, Na-ion, and Zn-ion) However, challenges such as low electronic/ionic conductivity, sluggish diffusion kinetics, and structural collapse during cycling are still the main factors limiting its practical application. A solid understanding of the correlation between structure and performance will greatly promote the performance and the further application of layer manganese dioxide. In this review, the energy storage mechanism of layer manganese dioxide in different energy storage devices is discussed in detail. Additionally, considering the current difficulties and challenges, recent advances in strategies for electrochemical performance improvement are systematically summarized, including synthetic methods, structure design, and interlayer engineering. Finally, suggestions for the future directions and developments in preparing layer manganese dioxide cathodes with high electrochemical performance are put forward.
Collapse
Affiliation(s)
- Ya-Di Zhang
- College of Petrochemical Engineering, Lanzhou Petrochemical University of Vocational Technology Lanzhou 730060 China
| | - Hongkun Xu
- College of Petrochemical Engineering, Lanzhou Petrochemical University of Vocational Technology Lanzhou 730060 China
| | - Manal S Ebaid
- Department of Chemistry, College of Science, Northern Border University Arar Saudi Arabia
| | - Xin-Jie Zhang
- College of Petrochemical Engineering, Lanzhou Petrochemical University of Vocational Technology Lanzhou 730060 China
| | - Kaixin Jiang
- Department of Mechanical and Construction Engineering, Northumbria University Newcastle Upon Tyne NE1 8ST UK
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta T6G 1H9 Edmonton Alberta Canada
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Northumbria University Newcastle Upon Tyne NE1 8ST UK
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University Newcastle Upon Tyne NE1 8ST UK
| |
Collapse
|
2
|
Zhang Z, Li F, Chen J, Yang G, Ji X, Tian Z, Wang B, Zhang L, Lucia L. High performance bio-supercapacitor electrodes composed of graphitized hemicellulose porous carbon spheres. Front Bioeng Biotechnol 2022; 10:1030944. [PMID: 36246347 PMCID: PMC9556887 DOI: 10.3389/fbioe.2022.1030944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
A template-free and one-step carbonization process was developed for fabricating graphitic porous carbon spheres (GPCSs) on hemicelluloses as the electrode material for supercapacitors. This method is green, low-energy, and less time consuming compared to the conventional two-step process (pore-forming and graphitizing). It uses K2FeO4, a mild activating agent that fulfills synchronous activation and graphitization. The GPCSs is regular spherical shape, have high nanoporosity, a large specific surface area (1,250 m2 g−1), and have a high graphitization degree. A unique structural advantage includes a rich interconnected conductive network for electron transfer that shortens the ion transport distance of the electrolyte. Remarkably, the GPCSs electrode displays outstanding electrochemical performance including high specific capacitance (262 F g−1 at 1.0 A g−1), rate capability energy (80%, 20 A g−1), and excellent cycling stability (95%, 10,000 cycles). This work represents a powerful methodology to develop sustainable and low-cost energy storage devices from hemicellulose.
Collapse
Affiliation(s)
- Zhili Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fengfeng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Fengfeng Li, ; Jiachuan Chen,
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- *Correspondence: Fengfeng Li, ; Jiachuan Chen,
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Zhongjian Tian
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Baobin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lei Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lucian Lucia
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, United States
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|