1
|
Intriago P, Montiel B, Valarezo M, Romero X, Arteaga K, Cercado N, Burgos M, Shinn AP, Montenegro A, Medina A, Gallardo J. Las Bolitas Syndrome in Penaeus vannamei Hatcheries in Latin America. Microorganisms 2024; 12:1186. [PMID: 38930568 PMCID: PMC11205452 DOI: 10.3390/microorganisms12061186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
In September 2023, several hatcheries in Latin America experienced significant mortality rates, up to 90%, in zoea stage 2 of Penaeus vannamei. Observations of fresh mounts revealed structures resembling lipid droplets, similar to those seen in a condition known as "las bolitas syndrome". Routine histopathological examinations identified detached cells and tissues in the digestive tracts of affected zoea, contrasting with the typical algal cell contents seen in healthy zoea. Polymerase chain reaction (PCR) testing for over 20 known shrimp pathogens indicated minimal differences between diseased and healthy batches. Both groups tested negative for acute hepatopancreatic necrosis disease (AHPND) but positive for Vibrio species and Rickettsia-like bacteria in the diseased samples. Histological analyses of the affected zoea revealed characteristic tissue degeneration in the hepatopancreas, forming spheres that eventually migrated into the upper gut, midgut, and midgut caeca, a pathology identified as bolitas syndrome (BS). Microbiological assessments revealed Vibrio species at concentrations of 106 CFU zoea/g in affected zoea, approximately two orders of magnitude higher than in healthy zoea. Bacterial isolation from both healthy and BS-affected zoea on thiosulphate-citrate-bile salts-sucrose (TCBS) agar and CHROMagar™ (Paris, France), followed by identification using API 20E, identified six strains of Vibrio alginolyticus. Despite similarities to "las bolitas syndrome" in fresh mounts, distinct histopathological differences were noted, particularly the presence of sloughed cells in the intestines and variations in hepatopancreatic lobes. This study highlights the critical need for further research to fully understand the etiology and pathology of bolitas syndrome in zoea stage 2 of P. vannamei to develop effective mitigation strategies for hatchery operations.
Collapse
Affiliation(s)
- Pablo Intriago
- South Florida Farming Corporation, 13811 Old Sheridan St, Southwest Ranches, FL 33330, USA
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Bolivar Montiel
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Mauricio Valarezo
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Xavier Romero
- Ficus 302 y Antonio Sanchez, Calle 11 N-O, Guayaquil, Ecuador
| | - Kelly Arteaga
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Nicole Cercado
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Milena Burgos
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Andrew P. Shinn
- INVE (Thailand), 471 Bond Street, Bangpood, Pakkred, Nonthaburi 11120, Thailand
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, QLD 4811, Australia
| | - Alejandra Montenegro
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Andrés Medina
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| | - Jennifer Gallardo
- South Florida Farming Laboratory, Av. Miguel Yunez, Km 14.5 via a Samborondón, Almax 3 Etapa 1- Lote 3 Bodega 2, Samborondón, Guayas, Ecuador (M.B.)
| |
Collapse
|
2
|
Lee D, Kim EJ, Baek Y, Lee J, Yoon Y, Nair GB, Yoon SS, Kim DW. Alterations in glucose metabolism in Vibrio cholerae serogroup O1 El Tor biotype strains. Sci Rep 2020; 10:308. [PMID: 31941909 PMCID: PMC6962216 DOI: 10.1038/s41598-019-57093-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/17/2019] [Indexed: 11/09/2022] Open
Abstract
The 2 biotypes of Vibrio cholerae O1 serogroup strains—classical and El Tor—use glucose in distinct ways. Classical biotype strains perform organic acid-producing fermentation and eventually lose viability due to the self-induced creation of an acidic environment, whereas El Tor biotype strains use an alternative neutral fermentation pathway, which confers them with survival advantages. However, we report that the neutral fermentation pathway has only been recruited in prototype Wave 1 El Tor biotype strains, which have not been isolated since the mid-1990s. Current Wave 2 and Wave 3 atypical El Tor strains contain a single-base deletion in a gene that directs bacteria toward neutral fermentation, resulting in the loss of neutral fermentation and an appearance that is similar to classical biotype strains. Moreover, when sufficient glucose was supplied, Wave 1 El Tor strains maintained their use of acid-producing fermentation, in parallel with neutral fermentation, and thus lost viability in the late stationary phase. The global replacement of Wave 1 El Tor strains by Wave 2 and 3 atypical El Tor strains implies that the acidic fermentation pathway may not be disadvantageous to V. cholerae. The characteristics that we have reported might improve oral rehydration in the treatment of cholera.
Collapse
Affiliation(s)
- Donghyun Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Eun Jin Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yeongjun Baek
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jiwon Lee
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Youngbae Yoon
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea.,Institute of Pharmacological Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - G B Nair
- Microbiome Laboratory, Rajiv Gandhi Centre for Biotechnology, Kerala, 695014, India
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Korea. .,Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Korea. .,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Dong Wook Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea. .,Institute of Pharmacological Research, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
3
|
Paranjape SS, Shashidhar R. Glucose sensitizes the stationary and persistent population of Vibrio cholerae to ciprofloxacin. Arch Microbiol 2019; 202:343-349. [PMID: 31664493 DOI: 10.1007/s00203-019-01751-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/13/2019] [Accepted: 10/16/2019] [Indexed: 12/01/2022]
Abstract
The subject of analysis in this report was the antibiotic susceptibility of V. cholerae under glucose supplementation since the metabolites can significantly alter the antibiotic sensitivity of bacteria. Glucose could change the antibiotic susceptibility in a growth phase-dependent manner, however, the antibiotic susceptibility of exponentially growing cells was not affected in the presence of glucose. What has been shown is that the stationary phase cells which show higher antibiotic tolerance, could be sensitized to ciprofloxacin and ampicillin by glucose supplementation (tenfold sensitive). The glucose increases the respiration which in turn increases the metabolism and cell division rate. Furthermore, the addition of glucose could increase the susceptibility of persister cells to ciprofloxacin only. In general, the bacterial susceptibility can be increased by combining the antibiotics with glucose.
Collapse
Affiliation(s)
- Shridhar S Paranjape
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (Deemed to be University), Mumbai, 400094, India
| | - Ravindranath Shashidhar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India.
- Life Sciences, Homi Bhabha National Institute (Deemed to be University), Mumbai, 400094, India.
| |
Collapse
|
4
|
Glucose Metabolism by Escherichia coli Inhibits Vibrio cholerae Intestinal Colonization of Zebrafish. Infect Immun 2018; 86:IAI.00486-18. [PMID: 30249745 DOI: 10.1128/iai.00486-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/16/2018] [Indexed: 12/15/2022] Open
Abstract
The Vibrio cholerae O1 serogroup is responsible for pandemic cholera and is divided into the classical and El Tor biotypes. Classical V. cholerae produces acid when using glucose as a carbon source, whereas El Tor V. cholerae produces the neutral product acetoin when using glucose as a carbon source. An earlier study demonstrated that Escherichia coli strains that metabolize glucose to acidic by-products drastically reduced the survival of V. cholerae strains in vitro In the present study, zebrafish were fed 1% glucose and either inoculated with single V. cholerae or E. coli strains or coinfected with both V. cholerae and E. coli A significant decrease in classical biotype colonization was observed after glucose feeding due to acid production in the zebrafish intestine. El Tor colonization was unaffected by glucose alone. However, the El Tor strain exhibited significantly lower colonization of the zebrafish when either of the acid-producing E. coli strains was coinoculated in the presence of glucose. An E. coli sugar transport mutant had no effect on V. cholerae colonization even in presence of glucose. Glucose and E. coli produced a prophylactic effect on El Tor colonization in zebrafish when E. coli was inoculated before V. cholerae infection. Thus, the probiotic feeding of E. coli inhibits V. cholerae colonization in a natural host. This suggests that a similar inhibitory effect could be seen in cholera patients, especially if a glucose-based oral rehydration solution (ORS) is administered in combination with probiotic E. coli during cholera treatment.
Collapse
|
5
|
Kim HY, Go J, Lee KM, Oh YT, Yoon SS. Guanosine tetra- and pentaphosphate increase antibiotic tolerance by reducing reactive oxygen species production in Vibrio cholerae. J Biol Chem 2018; 293:5679-5694. [PMID: 29475943 PMCID: PMC5900777 DOI: 10.1074/jbc.ra117.000383] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/16/2018] [Indexed: 02/06/2023] Open
Abstract
The pathogen Vibrio cholerae is the causative agent of cholera. Emergence of antibiotic-resistant V. cholerae strains is increasing, but the underlying mechanisms remain unclear. Herein, we report that the stringent response regulator and stress alarmone guanosine tetra- and pentaphosphate ((p)ppGpp) significantly contributes to antibiotic tolerance in V. cholerae We found that N16961, a pandemic V. cholerae strain, and its isogenic (p)ppGpp-overexpressing mutant ΔrelAΔspoT are both more antibiotic-resistant than (p)ppGpp0 (ΔrelAΔrelVΔspoT) and ΔdksA mutants, which cannot produce or utilize (p)ppGpp, respectively. We also found that additional disruption of the aconitase B-encoding and tricarboxylic acid (TCA) cycle gene acnB in the (p)ppGpp0 mutant increases its antibiotic tolerance. Moreover, expression of TCA cycle genes, including acnB, was increased in (p)ppGpp0, but not in the antibiotic-resistant ΔrelAΔspoT mutant, suggesting that (p)ppGpp suppresses TCA cycle activity, thereby entailing antibiotic resistance. Importantly, when grown anaerobically or incubated with an iron chelator, the (p)ppGpp0 mutant became antibiotic-tolerant, suggesting that reactive oxygen species (ROS) are involved in antibiotic-mediated bacterial killing. Consistent with that hypothesis, tetracycline treatment markedly increased ROS production in the antibiotic-susceptible mutants. Interestingly, expression of the Fe(III) ABC transporter substrate-binding protein FbpA was increased 10-fold in (p)ppGpp0, and fbpA gene deletion restored viability of tetracycline-exposed (p)ppGpp0 cells. Of note, FbpA expression was repressed in the (p)ppGpp-accumulating mutant, resulting in a reduction of intracellular free iron, required for the ROS-generating Fenton reaction. Our results indicate that (p)ppGpp-mediated suppression of central metabolism and iron uptake reduces antibiotic-induced oxidative stress in V. cholerae.
Collapse
Affiliation(s)
- Hwa Young Kim
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Junhyeok Go
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Kang-Mu Lee
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and
| | - Young Taek Oh
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, SangJu 37242, Korea, To whom correspondence may be addressed:
Freshwater Bioresources Utilization Division, Nakdonggang National Institute of Biological Resources, SangJu-si 37242, Korea. Tel.:
82-54-530-0932; Fax:
82-54-530-0949; E-mail:
| | - Sang Sun Yoon
- From the Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, and ,the Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea and , To whom correspondence may be addressed:
Dept. of Microbiology and Immunology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu Seoul 120-752, Korea. Tel.:
82-2-2228-1824; Fax:
82-2-392-7088; E-mail:
| |
Collapse
|