1
|
Kang CY, Huang IH, Chou CC, Wu TY, Chang JC, Hsiao YY, Cheng CH, Tsai WJ, Hsu KC, Wang S. Functional analysis of Clostridium difficile sortase B reveals key residues for catalytic activity and substrate specificity. J Biol Chem 2020; 295:3734-3745. [PMID: 32005667 PMCID: PMC7076211 DOI: 10.1074/jbc.ra119.011322] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/31/2020] [Indexed: 01/07/2023] Open
Abstract
Most of Gram-positive bacteria anchor surface proteins to the peptidoglycan cell wall by sortase, a cysteine transpeptidase that targets proteins displaying a cell wall sorting signal. Unlike other bacteria, Clostridium difficile, the major human pathogen responsible for antibiotic-associated diarrhea, has only a single functional sortase (SrtB). Sortase's vital importance in bacterial virulence has been long recognized, and C. difficile sortase B (Cd-SrtB) has become an attractive therapeutic target for managing C. difficile infection. A better understanding of the molecular activity of Cd-SrtB may help spur the development of effective agents against C. difficile infection. In this study, using site-directed mutagenesis, biochemical and biophysical tools, LC-MS/MS, and crystallographic analyses, we identified key residues essential for Cd-SrtB catalysis and substrate recognition. To the best of our knowledge, we report the first evidence that a conserved serine residue near the active site participates in the catalytic activity of Cd-SrtB and also SrtB from Staphylococcus aureus The serine residue indispensable for SrtB activity may be involved in stabilizing a thioacyl-enzyme intermediate because it is neither a nucleophilic residue nor a substrate-interacting residue, based on the LC-MS/MS data and available structural models of SrtB-substrate complexes. Furthermore, we also demonstrated that residues 163-168 located on the β6/β7 loop of Cd-SrtB dominate specific recognition of the peptide substrate PPKTG. The results of this work reveal key residues with roles in catalysis and substrate specificity of Cd-SrtB.
Collapse
Affiliation(s)
- Chia-Yu Kang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Tsai-Yu Wu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Jyun-Cyuan Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Yuan Hsiao
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 300, Taiwan,Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan,Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Cheng-Hsuan Cheng
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Jiun Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan,Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan, To whom correspondence should be addressed:
Dept. of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan. Tel.:
886-6-2353535, Ext. 5634; Fax:
886-6-2082705; E-mail:
| |
Collapse
|
3
|
Disparate subcellular location of putative sortase substrates in Clostridium difficile. Sci Rep 2017; 7:9204. [PMID: 28835650 PMCID: PMC5569036 DOI: 10.1038/s41598-017-08322-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a gastrointestinal pathogen but how the bacterium colonises this niche is still little understood. Sortase enzymes covalently attach specific bacterial proteins to the peptidoglycan cell wall and are often involved in colonisation by pathogens. Here we show C. difficile proteins CD2537 and CD3392 are functional substrates of sortase SrtB. Through manipulation of the C-terminal regions of these proteins we show the SPKTG motif is essential for covalent attachment to the cell wall. Two additional putative substrates, CD0183 which contains an SPSTG motif, and CD2768 which contains an SPQTG motif, are not cleaved or anchored to the cell wall by sortase. Finally, using an in vivo asymmetric cleavage assay, we show that despite containing a conserved SPKTG motif, in the absence of SrtB these proteins are localised to disparate cellular compartments.
Collapse
|
4
|
Corver J, Cordo' V, van Leeuwen HC, Klychnikov OI, Hensbergen PJ. Covalent attachment and Pro-Pro endopeptidase (PPEP-1)-mediated release of Clostridium difficile cell surface proteins involved in adhesion. Mol Microbiol 2017. [PMID: 28636257 DOI: 10.1111/mmi.13736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the past decade, Clostridium difficile has emerged as an important gut pathogen. This anaerobic, Gram-positive bacterium is the main cause of infectious nosocomial diarrhea. Whereas much is known about the mechanism through which the C. difficile toxins cause diarrhea, relatively little is known about the dynamics of adhesion and motility, which is mediated by cell surface proteins. This review will discuss the recent advances in our understanding of the sortase-mediated covalent attachment of cell surface (adhesion) proteins to the peptidoglycan layer of C. difficile and their release through the action of a highly specific secreted metalloprotease (Pro-Pro endopeptidase 1, PPEP-1). Specific emphasis will be on a model in which PPEP-1 and its substrates control the switch from a sessile to motile phenotype in C. difficile, and how this is regulated by the cyclic dinucleotide c-di-GMP (3'-5' cyclic dimeric guanosine monophosphate).
Collapse
Affiliation(s)
- Jeroen Corver
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Valentina Cordo'
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Hans C van Leeuwen
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Oleg I Klychnikov
- Laboratory for Biocrystallography, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Paul J Hensbergen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|