1
|
Lindemann PC, Mylvaganam H, Oppegaard O, Anthonisen IL, Zecic N, Skaare D. Case Report: Whole-Genome Sequencing of Serially Collected Haemophilus influenzae From a Patient With Common Variable Immunodeficiency Reveals Within-Host Evolution of Resistance to Trimethoprim-Sulfamethoxazole and Azithromycin After Prolonged Treatment With These Antibiotics. Front Cell Infect Microbiol 2022; 12:896823. [PMID: 35719354 PMCID: PMC9199433 DOI: 10.3389/fcimb.2022.896823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/01/2022] Open
Abstract
We report within-host evolution of antibiotic resistance to trimethoprim-sulfamethoxazole and azithromycin in a nontypeable Haemophilus influenzae strain from a patient with common variable immunodeficiency (CVID), who received repeated or prolonged treatment with these antibiotics for recurrent respiratory tract infections. Whole-genome sequencing of three longitudinally collected sputum isolates during the period April 2016 to January 2018 revealed persistence of a strain of sequence type 2386. Reduced susceptibility to trimethoprim-sulfamethoxazole in the first two isolates was associated with mutations in genes encoding dihydrofolate reductase (folA) and its promotor region, dihydropteroate synthase (folP), and thymidylate synthase (thyA), while subsequent substitution of a single amino acid in dihydropteroate synthase (G225A) rendered high-level resistance in the third isolate from 2018. Azithromycin co-resistance in this isolate was associated with amino acid substitutions in 50S ribosomal proteins L4 (W59R) and L22 (G91D), possibly aided by a substitution in AcrB (A604E) of the AcrAB efflux pump. All three isolates were resistant to aminopenicillins and cefotaxime due to TEM-1B beta-lactamase and identical alterations in penicillin-binding protein 3. Further resistance development to trimethoprim-sulfamethoxazole and azithromycin resulted in a multidrug-resistant phenotype. Evolution of multidrug resistance due to horizontal gene transfer and/or spontaneous mutations, along with selection of resistant subpopulations is a particular risk in CVID and other patients requiring repeated and prolonged antibiotic treatment or prophylaxis. Such challenging situations call for careful antibiotic stewardship together with supportive and supplementary treatment. We describe the clinical and microbiological course of events in this case report and address the challenges encountered.
Collapse
Affiliation(s)
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | | | - Nermin Zecic
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Dagfinn Skaare
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
2
|
López-López N, Euba B, Hill J, Dhouib R, Caballero L, Leiva J, Hosmer J, Cuesta S, Ramos-Vivas J, Díez-Martínez R, Schirra HJ, Blank LM, Kappler U, Garmendia J. Haemophilus influenzae Glucose Catabolism Leading to Production of the Immunometabolite Acetate Has a Key Contribution to the Host Airway-Pathogen Interplay. ACS Infect Dis 2020; 6:406-421. [PMID: 31933358 DOI: 10.1021/acsinfecdis.9b00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammatory responses and impaired airway immunity, which provides an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. Clinical evidence supports that the COPD airways present increased concentrations of glucose, which may facilitate proliferation of pathogenic bacteria able to use glucose as a carbon source. NTHi metabolizes glucose through respiration-assisted fermentation, leading to the excretion of acetate, formate, and succinate. We hypothesized that such specialized glucose catabolism may be a pathoadaptive trait playing a pivotal role in the NTHi airway infection. To find out whether this is true, we engineered and characterized bacterial mutant strains impaired to produce acetate, formate, or succinate by inactivating the ackA, pflA, and frdA genes, respectively. While the inactivation of the pflA and frdA genes only had minimal physiological effects, the inactivation of the ackA gene affected acetate production and led to reduced bacterial growth, production of lactate under low oxygen tension, and bacterial attenuation in vivo. Moreover, bacterially produced acetate was able to stimulate the expression of inflammatory genes by cultured airway epithelial cells. These results back the notion that the COPD lung supports NTHi growth on glucose, enabling production of fermentative end products acting as immunometabolites at the site of infection. Thus, glucose catabolism may contribute not only to NTHi growth but also to bacterially driven airway inflammation. This information has important implications for developing nonantibiotic antimicrobials, given that airway glucose homeostasis modifying drugs could help prevent microbial infections associated with chronic lung disease.
Collapse
Affiliation(s)
| | - Begoña Euba
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Julian Hill
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Rabeb Dhouib
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lucı́a Caballero
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
| | - José Leiva
- Servicio de Microbiologı́a, Clı́nica Universidad de Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Jennifer Hosmer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sergio Cuesta
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
| | - José Ramos-Vivas
- Servicio Microbiologı́a, Hospital Universitario Marqués de Valdecilla and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain
- Red Española de Investigación en Patologı́a Infecciosa (REIPI), ISCIII, Madrid, Spain
| | - Roberto Díez-Martínez
- Telum Therapeutics, Centro Europeo de Empresas e Innovación de Navarra (CEIN), 31110 Noáin, Spain
| | - Horst Joachim Schirra
- Centre for Advanced Imaging, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Lars M. Blank
- Institute of Applied Biotechnology, RWTH Aachen University, 52074 Aachen, Germany
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Junkal Garmendia
- Instituto de Agrobiotecnologı́a, CSIC-Gobierno Navarra, 31192 Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
3
|
Preclinical Evaluation of the Antimicrobial-Immunomodulatory Dual Action of Xenohormetic Molecules against Haemophilus influenzae Respiratory Infection. Biomolecules 2019; 9:biom9120891. [PMID: 31861238 PMCID: PMC6995536 DOI: 10.3390/biom9120891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by abnormal inflammation and impaired airway immunity, providing an opportunistic platform for nontypeable Haemophilus influenzae (NTHi) infection. In this context, therapies targeting not only overactive inflammation without significant adverse effects, but also infection are of interest. Increasing evidence suggests that polyphenols, plant secondary metabolites with anti-inflammatory and antimicrobial properties, may be protective. Here, a Cistus salviifolius plant extract containing quercetin, myricetin, and punicalagin was shown to reduce NTHi viability. Analysis of these polyphenols revealed that quercetin has a bactericidal effect on NTHi, does not display synergies, and that bacteria do not seem to develop resistance. Moreover, quercetin lowered NTHi airway epithelial invasion through a mechanism likely involving inhibition of Akt phosphorylation, and reduced the expression of bacterially-induced proinflammatory markers il-8, cxcl-1, il-6, pde4b, and tnfα. We further tested quercetin’s effect on NTHi murine pulmonary infection, showing a moderate reduction in bacterial counts and significantly reduced expression of proinflammatory genes, compared to untreated mice. Quercetin administration during NTHi infection on a zebrafish septicemia infection model system showed a bacterial clearing effect without signs of host toxicity. In conclusion, this study highlights the therapeutic potential of the xenohormetic molecule quercetin against NTHi infection.
Collapse
|
4
|
Sierra Y, Tubau F, González-Díaz A, Carrera-Salinas A, Moleres J, Bajanca-Lavado P, Garmendia J, Domínguez MÁ, Ardanuy C, Martí S. Assessment of trimethoprim-sulfamethoxazole susceptibility testing methods for fastidious Haemophilus spp. Clin Microbiol Infect 2019; 26:944.e1-944.e7. [PMID: 31811916 DOI: 10.1016/j.cmi.2019.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES To compare the determinants of trimethoprim-sulfamethoxazole resistance with established susceptibility values for fastidious Haemophilus spp., to provide recommendations for optimal trimethoprim-sulfamethoxazole measurement. METHODS We collected 50 strains each of Haemophilus influenzae and Haemophilus parainfluenzae at Bellvitge University Hospital. Trimethoprim-sulfamethoxazole susceptibility was tested by microdilution, E-test and disc diffusion using both Mueller-Hinton fastidious (MH-F) medium and Haemophilus test medium (HTM) following EUCAST and CLSI criteria, respectively. Mutations in folA, folP and additional determinants of resistance were identified in whole-genome-sequenced isolates. RESULTS Strains presented generally higher rates of trimethoprim-sulfamethoxazole resistance when grown on HTM than on MH-F, independent of the methodology used (average MIC 2.6-fold higher in H. influenzae and 1.2-fold higher in H. parainfluenzae). The main resistance-related determinants were as follows: I95L and F154S/V in folA; 3- and 15-bp insertions and substitutions in folP; acquisition of sul genes; and FolA overproduction potentially linked to mutations in -35 and -10 promoter motifs. Of note, 2 of 19 H. influenzae strains (10.5%) and 9 of 33 H. parainfluenzae strains (27.3%) with mutations and assigned as resistant by microdilution were inaccurately considered susceptible by disc diffusion. This misinterpretation was resolved by raising the clinical resistance breakpoint of the EUCAST guidelines to ≤30 mm. CONCLUSIONS Given the routine use of disc diffusion, a significant number of strains could potentially be miscategorized as susceptible to trimethoprim-sulfamethoxazole despite having resistance-related mutations. A simple modification to the current clinical resistance breakpoint given by the EUCAST guideline for MH-F ensures correct interpretation and correlation with the reference standard method of microdilution.
Collapse
Affiliation(s)
- Y Sierra
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
| | - F Tubau
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - A González-Díaz
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain
| | - A Carrera-Salinas
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain
| | - J Moleres
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
| | - P Bajanca-Lavado
- Haemophilus Influenzae Reference Laboratory, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - J Garmendia
- Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
| | - M Ángeles Domínguez
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Spanish Network for Research in Infectious Diseases (REIPI), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - C Ardanuy
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain; Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| | - S Martí
- Microbiology Department, Hospital Universitari de Bellvitge, IDIBELL-UB, Barcelona, Spain; Research Network for Respiratory Diseases (CIBERES), ISCIII, Madrid, Spain.
| |
Collapse
|
5
|
Rodríguez-Arce I, Al-Jubair T, Euba B, Fernández-Calvet A, Gil-Campillo C, Martí S, Törnroth-Horsefield S, Riesbeck K, Garmendia J. Moonlighting of Haemophilus influenzae heme acquisition systems contributes to the host airway-pathogen interplay in a coordinated manner. Virulence 2019; 10:315-333. [PMID: 30973092 PMCID: PMC6550540 DOI: 10.1080/21505594.2019.1596506] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/18/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023] Open
Abstract
Nutrient iron sequestration is the most significant form of nutritional immunity and causes bacterial pathogens to evolve strategies of host iron scavenging. Cigarette smoking contains iron particulates altering lung and systemic iron homeostasis, which may enhance colonization in the lungs of patients suffering chronic obstructive pulmonary disease (COPD) by opportunistic pathogens such as nontypeable. NTHi is a heme auxotroph, and the NTHi genome contains multiple heme acquisition systems whose role in pulmonary infection requires a global understanding. In this study, we determined the relative contribution to NTHi airway infection of the four heme-acquisition systems HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF that are located at the bacterial outer membrane or the periplasm. Our computational studies provided plausible 3D models for HbpA, SapA, PE, and HxuA interactions with heme. Generation and characterization of single mutants in the hxuCBA, hpe, sapA, and hbpA genes provided evidence for participation in heme binding-storage and inter-bacterial donation. The hxuA, sapA, hbpA, and hpe genes showed differential expression and responded to heme. Moreover, HxuCBA, PE, SapABCDFZ, and HbpA-DppBCDF presented moonlighting properties related to resistance to antimicrobial peptides or glutathione import, together likely contributing to the NTHi-host airway interplay, as observed upon cultured airway epithelia and in vivo lung infection. The observed multi-functionality was shown to be system-specific, thus limiting redundancy. Together, we provide evidence for heme uptake systems as bacterial factors that act in a coordinated and multi-functional manner to subvert nutritional- and other sources of host innate immunity during NTHi airway infection.
Collapse
Affiliation(s)
| | - Tamim Al-Jubair
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Begoña Euba
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | - Sara Martí
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Departamento Microbiología, Hospital Universitari Bellvitge, University of Barcelona, IDIBELL, Barcelona, Spain
| | - Susanna Törnroth-Horsefield
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Lund, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Gobierno, Navarra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
6
|
Rodrigues JV, Shakhnovich EI. Adaptation to mutational inactivation of an essential gene converges to an accessible suboptimal fitness peak. eLife 2019; 8:50509. [PMID: 31573512 PMCID: PMC6828540 DOI: 10.7554/elife.50509] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanisms of adaptation to inactivation of essential genes remain unknown. Here we inactivate E. coli dihydrofolate reductase (DHFR) by introducing D27G,N,F chromosomal mutations in a key catalytic residue with subsequent adaptation by an automated serial transfer protocol. The partial reversal G27- > C occurred in three evolutionary trajectories. Conversely, in one trajectory for D27G and in all trajectories for D27F,N strains adapted to grow at very low metabolic supplement (folAmix) concentrations but did not escape entirely from supplement auxotrophy. Major global shifts in metabolome and proteome occurred upon DHFR inactivation, which were partially reversed in adapted strains. Loss-of-function mutations in two genes, thyA and deoB, ensured adaptation to low folAmix by rerouting the 2-Deoxy-D-ribose-phosphate metabolism from glycolysis towards synthesis of dTMP. Multiple evolutionary pathways of adaptation converged to a suboptimal solution due to the high accessibility to loss-of-function mutations that block the path to the highest, yet least accessible, fitness peak. Predicting how viruses and bacteria evolve remains a challenge. The ability to anticipate when and how bacteria might develop drug resistance would make treating life-threatening diseases easier and could potentially help prevent drug resistance altogether. Studying bacterial evolution under different conditions and cataloguing all possible DNA mutations that allow these bacteria to survive are crucial steps in predicting the appearance of drug resistance. Studies have revealed that bacteria can adapt to sources of stress, such as antibiotics, in different ways – each involving mutations in distinct genes. However, not all the mutations provide the same benefits to the organism, and the factors that influence how bacteria will adapt are unclear. Now, Rodrigues and Shakhnovich have used a new approach to push the adaptation ability of the bacterium Escherichia coli to the limit. First, they genetically engineered different E. coli strains by introducing distinct mutations to an enzyme the bacterium needs to make DNA. These mutations make the resulting strains dependent on external molecules to synthesize new DNA. Next, the cells were grown in conditions where the supply of these DNA precursors was progressively decreased, forcing them to adapt. The obvious way for bacteria to adapt to these conditions would be to ‘revert’ the mutations that Rodrigues and Shakhnovich introduced in the first place. By using this approach, Rodrigues and Shakhnovich were able to test how often the obvious evolutionary solution happens compared with presumably less-preferred alternative routes. In rare cases, a specific mutation did restore the activity of the enzyme that enabled DNA synthesis. However, in most cases the bacteria found a different evolutionary solution whereby they all adapt to the decrease in external DNA precursors in the same way, but not by reverting the original mutation. Instead, further mutations disrupt the activity of two metabolic genes, allowing the cells to use the external DNA precursors more efficiently, and keep building DNA. These cells are therefore able to survive even when the levels of the external DNA components are very low, but they will die in the complete absence of these precursor molecules. This evolutionary solution leads to a non-optimal effect: mutations that restore the activity of the original enzyme, which are the best solution when the two metabolic genes are intact, are no longer as effective. This finding represents a clear example of interactions between genes determining evolutionary outcomes. Rodrigues and Shakhnovich showed that, since it is more likely for a random mutation to disrupt a gene than to revert a previous mutation, adaptations that are less-than-optimal but still work might predominate simply because they happen faster. Understanding why certain evolutionary adaptations prevail is an important step in predicting evolution and may lead to breakthroughs in many areas. For example, if scientists can identify mutations likely to make bacteria resistant to drugs, it may be possible to act proactively against the bacterial strains that carry those mutations. Eventually, if the factors that lead to specific adaptations are known, it may be possible to exploit this knowledge to create weaknesses in the bacteria’s own defences.
Collapse
Affiliation(s)
- João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
7
|
García-Fojeda B, González-Carnicero Z, de Lorenzo A, Minutti CM, de Tapia L, Euba B, Iglesias-Ceacero A, Castillo-Lluva S, Garmendia J, Casals C. Lung Surfactant Lipids Provide Immune Protection Against Haemophilus influenzae Respiratory Infection. Front Immunol 2019; 10:458. [PMID: 30936871 PMCID: PMC6431623 DOI: 10.3389/fimmu.2019.00458] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) causes persistent respiratory infections in patients with chronic obstructive pulmonary disease (COPD), probably linked to its capacity to invade and reside within pneumocytes. In the alveolar fluid, NTHi is in contact with pulmonary surfactant, a lipoprotein complex that protects the lung against alveolar collapse and constitutes the front line of defense against inhaled pathogens and toxins. Decreased levels of surfactant phospholipids have been reported in smokers and patients with COPD. The objective of this study was to investigate the effect of surfactant phospholipids on the host-pathogen interaction between NTHi and pneumocytes. For this purpose, we used two types of surfactant lipid vesicles present in the alveolar fluid: (i) multilamellar vesicles (MLVs, > 1 μm diameter), which constitute the tensioactive material of surfactant, and (ii) small unilamellar vesicles (SUVs, 0.1 μm diameter), which are generated after inspiration/expiration cycles, and are endocytosed by pneumocytes for their degradation and/or recycling. Results indicated that extracellular pulmonary surfactant binds to NTHi, preventing NTHi self-aggregation and inhibiting adhesion of NTHi to pneumocytes and, consequently, inhibiting NTHi invasion. In contrast, endocytosed surfactant lipids, mainly via the scavenger receptor SR-BI, did not affect NTHi adhesion but inhibited NTHi invasion by blocking bacterial uptake in pneumocytes. This blockade was made possible by inhibiting Akt phosphorylation and Rac1 GTPase activation, which are signaling pathways involved in NTHi internalization. Administration of the hydrophobic fraction of lung surfactant in vivo accelerated bacterial clearance in a mouse model of NTHi pulmonary infection, supporting the notion that the lipid component of lung surfactant protects against NTHi infection. These results suggest that alterations in surfactant lipid levels in COPD patients may increase susceptibility to infection by this pathogen.
Collapse
Affiliation(s)
- Belén García-Fojeda
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Zoe González-Carnicero
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Alba de Lorenzo
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Carlos M Minutti
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia de Tapia
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Begoña Euba
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Agrobiotecnología, Mutilva, Spain
| | - Alba Iglesias-Ceacero
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Sonia Castillo-Lluva
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain
| | - Junkal Garmendia
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Agrobiotecnología, Mutilva, Spain
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology I, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Modulation of Haemophilus influenzae interaction with hydrophobic molecules by the VacJ/MlaA lipoprotein impacts strongly on its interplay with the airways. Sci Rep 2018; 8:6872. [PMID: 29720703 PMCID: PMC5932069 DOI: 10.1038/s41598-018-25232-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/13/2018] [Indexed: 01/02/2023] Open
Abstract
Airway infection by nontypeable Haemophilus influenzae (NTHi) associates to chronic obstructive pulmonary disease (COPD) exacerbation and asthma neutrophilic airway inflammation. Lipids are key inflammatory mediators in these disease conditions and consequently, NTHi may encounter free fatty acids during airway persistence. However, molecular information on the interplay NTHi-free fatty acids is limited, and we lack evidence on the importance of such interaction to infection. Maintenance of the outer membrane lipid asymmetry may play an essential role in NTHi barrier function and interaction with hydrophobic molecules. VacJ/MlaA-MlaBCDEF prevents phospholipid accumulation at the bacterial surface, being the only system involved in maintaining membrane asymmetry identified in NTHi. We assessed the relationship among the NTHi VacJ/MlaA outer membrane lipoprotein, bacterial and exogenous fatty acids, and respiratory infection. The vacJ/mlaA gene inactivation increased NTHi fatty acid and phospholipid global content and fatty acyl specific species, which in turn increased bacterial susceptibility to hydrophobic antimicrobials, decreased NTHi epithelial infection, and increased clearance during pulmonary infection in mice with both normal lung function and emphysema, maybe related to their shared lung fatty acid profiles. Altogether, we provide evidence for VacJ/MlaA as a key bacterial factor modulating NTHi survival at the human airway upon exposure to hydrophobic molecules.
Collapse
|