1
|
Ribeiro Dos Santos U, Lima Dos Santos J. Lessons from the field: Trichoderma in agriculture and human health. Can J Microbiol 2025; 71:1-15. [PMID: 40227123 DOI: 10.1139/cjm-2024-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
The use of Trichoderma in agriculture as both a biocontrol agent and biofertilizer hinges on its ability to colonize the rhizosphere, promote plant growth, endure adverse environments, compete for space and nutrients, and produce enzymes and secondary metabolites to mycoparasitize and infect other fungus. In humans, Trichoderma exhibits the capacity to infect various bodily tissues, leading to Trichodermosis. There has been a notable increase in cases ranging from superficial to fatal, invasive, and disseminated infections, particularly among immunocompromised individuals. Trichoderma species employ diverse strategies to colonize and survive in various environments, infecting phytopathogens; however, the mechanisms and virulence factors contributing to human infections remain poorly understood. In this mini review, we provide a brief overview and contextualization of the virulence mechanisms employed by Trichoderma in parasitizing other fungi, as well as those implicated in modulating plant immunity and inducing human infections. Furthermore, we discuss the similarity of these virulence factors capable of modulating the mammalian immune system and their potential implications for human infection.
Collapse
Affiliation(s)
- Uener Ribeiro Dos Santos
- Immunobiology Laboratory, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| | - Jane Lima Dos Santos
- Immunobiology Laboratory, Department of Biological Sciences, State University of Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
2
|
Gang J, Ping Y, Du C. Anti-Magnaporthe oryzae Activity of Streptomyces bikiniensis HD-087 In Vitro and Bioinformatics Analysis of Polyketide Synthase Gene pksL. Curr Microbiol 2024; 81:379. [PMID: 39340701 DOI: 10.1007/s00284-024-03898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Streptomyces bikiniensis HD-087 is capable of synthesizing various antimicrobial substances to counter the detrimental effects of hazardous microorganisms. To elucidate whether it produces polyketide antibiotics and the synthesis mechanism of antibiotic substances, the metabolites and related genes of S. bikiniensis HD-087 were analyzed through LC-MS, anti-Magnaporthe oryzae activity detection, and bioinformatics approaches. The result indicated that the strain HD-087 could produce erythromycin, a polyketide antibiotic. The inhibitory zones of the fermentation supernatant of strain HD-087 and methanol solution of erythromycin extract against M. oryzae were 40.84 ± 0.68 mm and 33.18 ± 0.81 mm, respectively. The IC50 value of erythromycin extract for inhibiting spore germination of erythromycin extract was 220.43 μg/mL. There are two polyketide synthesis gene clusters in the genome of strain HD-087, namely t1pks-nrps and t3pks-lantipeptide-t1pks-nrps. The key gene pksL in the t3pks-lantipeptide-t1pks-nrps gene cluster was predicted. The results suggested that it encodes a stable, hydrophilic, and acidic protein, mainly composed of α-helix and random coil. The PksL protein contains dehydrogenase (DH), ketone reductase (KR), acyl carrier protein (ACP), and ketone synthase (KS) domains. Moreover, it can form interaction networks with 11 proteins containing domains, such as polyketide synthase and ACP synthase. The molecular docking between PksL and acetyl-CoA is stable and strong, suggesting that PksL protein could catalyze the synthesis of polyketides with CoA as a substrate. This study provides a theoretical basis for further exploring the polyketides synthesis mechanism and developing antifungal metabolites in S. bikiniensis HD-087.
Collapse
Affiliation(s)
- Jiahan Gang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
3
|
Ahmed A, He P, He Y, Singh BK, Wu Y, Munir S, He P. Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. Crit Rev Biotechnol 2024; 44:562-580. [PMID: 37055183 DOI: 10.1080/07388551.2023.2183379] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 02/06/2023] [Indexed: 04/15/2023]
Abstract
Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South, New South Wales, Australia
- Global Centre for Land Based Innovation, Western Sydney University, Penrith South, New South Wales, Australia
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
4
|
Shu L, Tang J, Liu S, Tao Y. Plasma cell signatures predict prognosis and treatment efficacy for lung adenocarcinoma. Cell Oncol (Dordr) 2024; 47:555-571. [PMID: 37814076 DOI: 10.1007/s13402-023-00883-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE This study aims to identify key genes regulating tumor infiltrating plasma cells (PC) and provide new insights for innovative immunotherapy. METHODS Key genes related to PC were identified using machine learning in lung adenocarcinoma (LUAD) patients. A prognostic model called PC scores was developed using TCGA data and validated with GEO cohorts. We assessed the molecular background, immune features, and drug sensitivity of the high PC scores group. Real-time PCR was utilized to assess the expression of hub genes in both localized LUAD patients and LUAD cell lines. RESULTS We constructed PC scores based on seventeen PC-related hub genes (ELOVL6, MFI2, FURIN, DOK1, ERO1LB, CLEC7A, ZNF431, KIAA1324, NUCB2, TXNDC11, ICAM3, CR2, CLIC6, CARNS1, P2RY13, KLF15, and SLC24A4). Higher age, TNM stage, and PC scores independently predicted shorter overall survival. The AUC value of PC scores for one year, three years, and five years of overall survival were 0.713, 0.716, and 0.690, separately. The nomogram model that integrated age, stage, and PC scores showed significantly higher predictive value than stage alone (P < 0.01). High PC scores group exhibited an immune suppressing microenvironment with lower B, CD8 + T, CD4 + T, and dendritic cell infiltration. Docetaxel, gefitinib, and erlotinib had lower IC50 in high PC groups (P < 0.001). After validation through the local cohort and in vitro experiments, we ultimately confirmed three key potential targets: MFI2, KLF15, and CLEC7A. CONCLUSION We proposed a prediction mode which can effectively identify high-risk LUAD patients and found three novel genes closely correlated with PC tumor infiltration.
Collapse
Affiliation(s)
- Long Shu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jun Tang
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China.
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
5
|
Dos Santos UR, Dos Santos JL. Trichoderma after crossing kingdoms: infections in human populations. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:97-126. [PMID: 36748123 DOI: 10.1080/10937404.2023.2172498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Trichoderma is a saprophytic fungus that is used worldwide as a biocontrol and biofertilizer agent. Although considered nonpathogenic until recently, reports of human infections produced by members of the Trichoderma genus are increasing. Numerous sources of infection were proposed based upon patient data and phylogenetic analysis, including air, agriculture, and healthcare facilities, but the deficit of knowledge concerning Trichoderma infections makes patient treatment difficult. These issues are compounded by isolates that present profiles which exhibit high minimum inhibitory concentration values to available antifungal drugs. The aim of this review is to present the global distribution and sources of infections that affect both immunocompetent and immunocompromised hosts, clinical features, therapeutic strategies that are used to treat patients, as well as highlighting treatments with the best responses. In addition, the antifungal susceptibility profiles of Trichoderma isolates that have emerged in recent decades were examined and which antifungal drugs need to be further evaluated as potential candidates to treat Trichoderma infections are also indicated.
Collapse
Affiliation(s)
- Uener Ribeiro Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| | - Jane Lima Dos Santos
- Immunobiology Laboratory, Department of Biological Science, State University of Santa Cruz, Ilhéus, BA, Brazil
| |
Collapse
|
6
|
Yi YJ, Yin YN, Yang YA, Liang YQ, Shan YT, Zhang CF, Zhang YR, Liang ZP. Antagonistic Activity and Mechanism of Bacillus subtilis XZ16-1 Suppression of Wheat Powdery Mildew and Growth Promotion of Wheat. PHYTOPATHOLOGY 2022; 112:2476-2485. [PMID: 35819334 DOI: 10.1094/phyto-04-22-0118-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Wheat powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most serious wheat diseases in the world. Biological control is considered an environmentally safe approach to control plant diseases. Here, to develop effective biocontrol agents for controlling wheat powdery mildew, antagonistic strain XZ16-1 was isolated and identified as Bacillus subtilis based on the morphological, biochemical, and physiological characteristics and 16S rDNA sequence. The culture filtrate of B. subtilis XZ16-1 and its extracts had a significant inhibitory effect on the spore germination of Bgt. Moreover, the therapeutic and prevention efficacy of the 100% culture filtrate on wheat powdery mildew reached 81.18 and 83.72%, respectively, which was better than that of chemical fungicide triadimefon. Further antimicrobial mechanism analysis showed that the XZ16-1 culture filtrate could inhibit the development of powdery mildew spores by disrupting the cell membrane integrity, causing reductions in the mitochondrial membrane potential, and inducing the accumulation of reactive oxygen species in the spores. Biochemical detection indicated that XZ16-1 could solubilize phosphate, fix nitrogen, and produce hydrolases, lipopeptides, siderophores, and indole-3-acetic acid. Defense-related enzymes activated in wheat seedlings treated with the culture filtrate indicated that disease resistance was induced in wheat to resist pathogens. Furthermore, a 106 CFU/ml suspension of XZ16-1 increased the height, root length, fresh weight, and dry weight of wheat seedlings by 77.13, 63.46, 76.73, and 19.16%, respectively, and showed good growth-promotion properties. This study investigates the antagonistic activity and reveals the action mechanism of XZ16-1, which can provide an effective microbial agent for controlling wheat powdery mildew.
Collapse
Affiliation(s)
- Yan-Jie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ya-Nan Yin
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ying-Ao Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yu-Qian Liang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - You-Tian Shan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chang-Fu Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yu-Rong Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Zhen-Pu Liang
- College of Life Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|