1
|
Kevat S, Mistry A, Oza N, Majmudar M, Patel N, Shah R, Ramachandran AV, Chauhan R, Haque S, Parashar NC, Tuli HS, Parashar G. Cancer Stem Cell Regulation as a Target of Therapeutic Intervention: Insights into Breast, Cervical and Lung Cancer. Cell Biochem Biophys 2025:10.1007/s12013-025-01666-w. [PMID: 39843681 DOI: 10.1007/s12013-025-01666-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 01/24/2025]
Abstract
Cancer Stem Cells (CSCs) play an important role in the development, resistance, and recurrence of many malignancies. These subpopulations of tumor cells have the potential to self-renew, differentiate, and resist conventional therapy, highlighting their importance in cancer etiology. This review explores the regulatory mechanisms of CSCs in breast, cervical, and lung cancers, highlighting their plasticity, self-renewal, and differentiation capabilities. CD44+/CD24- cells are a known marker for breast CSCs. Markers like as CD133 and ALDH have been discovered in cervical cancer CSCs. Similarly, in lung cancer, CSCs identified by CD44, CD133, and ALDH are linked to aggressive tumor behavior and poor therapy results. The commonalities between these tumors highlight the general necessity of targeting CSCs in treatment efforts. However, the intricacies of CSC activity, such as their interaction with the tumor microenvironment and particular signaling pathways differ between cancer types, demanding specialized methods. Wnt/β-catenin, Notch, and Hedgehog pathways are one of the essential signaling pathways, targeting them, may show ameliorative effects on breast, lung and cervical carcinomas and their respective CSCs. Pre-clinical data suggests targeting specific signaling pathways can eliminate CSCs, but ongoing clinical trials are on utilizing signaling pathway inhibitors in patients. In recent studies it has been reported that CAR T based targeting of specific markers may be used as combination therapy. Ongoing research related to nanobiotechnology can also play a significant role in diagnosis and treatment purpose targeting CSCs, as nanomaterials can be used for precise targeting and identification of CSCs. Further research into the targeting of signaling pathways and its precursors could prove to be right step into directing therapies towards CSCs for cancer therapy.
Collapse
Affiliation(s)
- Sakshi Kevat
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Archie Mistry
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Naman Oza
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Mohit Majmudar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Netra Patel
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Rushabh Shah
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - A V Ramachandran
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- School Of Medicine, Universidad Espiritu Santo, Samborondon, Ecuador
| | | | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Gaurav Parashar
- Division of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India.
| |
Collapse
|
2
|
Folliero V, Dell’Annunziata F, Chianese A, Morone MV, Mensitieri F, Di Spirito F, Mollo A, Amato M, Galdiero M, Dal Piaz F, Pagliano P, Rinaldi L, Franci G. Epigenetic and Genetic Keys to Fight HPV-Related Cancers. Cancers (Basel) 2023; 15:5583. [PMID: 38067286 PMCID: PMC10705756 DOI: 10.3390/cancers15235583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2024] Open
Abstract
Cervical cancer ranks as the fourth most prevalent cancer among women globally, with approximately 600,000 new cases being diagnosed each year. The principal driver of cervical cancer is the human papillomavirus (HPV), where viral oncoproteins E6 and E7 undertake the role of driving its carcinogenic potential. Despite extensive investigative efforts, numerous facets concerning HPV infection, replication, and pathogenesis remain shrouded in uncertainty. The virus operates through a variety of epigenetic mechanisms, and the epigenetic signature of HPV-related tumors is a major bottleneck in our understanding of the disease. Recent investigations have unveiled the capacity of viral oncoproteins to influence epigenetic changes within HPV-related tumors, and conversely, these tumors exert an influence on the surrounding epigenetic landscape. Given the escalating occurrence of HPV-triggered tumors and the deficiency of efficacious treatments, substantial challenges emerge. A promising avenue to address this challenge lies in epigenetic modulators. This review aggregates and dissects potential epigenetic modulators capable of combatting HPV-associated infections and diseases. By delving into these modulators, novel avenues for therapeutic interventions against HPV-linked cancers have come to the fore.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Francesca Mensitieri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Federica Di Spirito
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Antonio Mollo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Massimo Amato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.C.); (M.V.M.); (M.G.)
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| | - Luca Rinaldi
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (F.D.); (F.M.); (F.D.S.); (A.M.); (M.A.); (F.D.P.); (P.P.)
| |
Collapse
|
3
|
Jassim A, Rahrmann EP, Simons BD, Gilbertson RJ. Cancers make their own luck: theories of cancer origins. Nat Rev Cancer 2023; 23:710-724. [PMID: 37488363 DOI: 10.1038/s41568-023-00602-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Cancer has been a leading cause of death for decades. This dismal statistic has increased efforts to prevent the disease or to detect it early, when treatment is less invasive, relatively inexpensive and more likely to cure. But precisely how tissues are transformed continues to provoke controversy and debate, hindering cancer prevention and early intervention strategies. Various theories of cancer origins have emerged, including the suggestion that it is 'bad luck': the inevitable consequence of random mutations in proliferating stem cells. In this Review, we discuss the principal theories of cancer origins and the relative importance of the factors that underpin them. The body of available evidence suggests that developing and ageing tissues 'walk a tightrope', retaining adequate levels of cell plasticity to generate and maintain tissues while avoiding overstepping into transformation. Rather than viewing cancer as 'bad luck', understanding the complex choreography of cell intrinsic and extrinsic factors that characterize transformation holds promise to discover effective new ways to prevent, detect and stop cancer before it becomes incurable.
Collapse
Affiliation(s)
- Amir Jassim
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Eric P Rahrmann
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Ben D Simons
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Pal D, Samadder S, Dutta P, Roychowdhury A, Chakraborty B, Dutta S, Roy A, Mandal RK, Panda CK. Differential association of hedgehog pathway in development of cervical carcinoma and its chemo-tolerance. Pathol Res Pract 2023; 248:154696. [PMID: 37516000 DOI: 10.1016/j.prp.2023.154696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
Cervical carcinoma (CACX) is still a dreadful threat to women in developing countries. Available conventional chemo-radiation therapies are not sufficient to restrict the disease recurrence. To unravel the mechanism of the disease recurrence, alteration of hedgehog self-renewal pathway was evaluated during development of CACX and in chemo-tolerance of the tumor. We have analyzed the alterations (expression/methylation/deletion) of some key regulatory genes (HHIP/SUFU/SHH/ SMO/GLI1) of hedgehog self-renewal pathway in cervical lesions at different clinical stages and compared with different datasets, followed by their clinico-pathological correlations. The changes in expression/methylation of the genes were then evaluated in two CACX cell lines (SiHa/HeLa) after treatment with chemotherapeutic drug cisplatin at different concentrations. Down regulation (mRNA/protein) of the antagonists HHIP and SUFU due to promoter methylation and/or deletion along with upregulation (protein) of agonists SHH, SMO and GLI1 was seen in early invasive lesions and subsequent clinical stages. Reduced protein expression of HHIP and SUFU showed significant association with high/intermediate expression of agonists SHH, SMO, GLI1 in the tumors and also poor prognosis of the patients. It was evident that cisplatin could restrict the growth of HeLa and SiHa cells through significant upregulation of antagonists HHIP and SUFU due to their promoter hypomethylation and down regulation of SHH in a concentration dependent manner without any significant changes in expression of SMO and GLI1, leading to the tumor cells in a dormant state. Thus, interplay of the agonists and antagonists has important role in activation of hedgehog pathway during development of CACX, whereas inactivation of the pathway due to upregulation of the antagonists is an important phenomenon in chemo-tolerance of the tumor. This suggests importance of epigenetic modification in chemo-resistance of CACX.
Collapse
Affiliation(s)
- Debolina Pal
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Sudip Samadder
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Priyanka Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India; Division of Hematology, Oncology, and Palliative Care, Department of Internal Medicine, MasseyCancer Center, Virginia Commonwealth University, Richmond, USA
| | - Balarko Chakraborty
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Sankhadeep Dutta
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Anup Roy
- Department of Pathology, Nil RatanSircar Medical College and Hospital, Kolkata, India
| | - Ranajit Kumar Mandal
- Department of Gynecologic Oncology, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, West Bengal, India.
| |
Collapse
|
5
|
High-Risk Oncogenic Human Cytomegalovirus. Viruses 2022; 14:v14112462. [PMID: 36366560 PMCID: PMC9695668 DOI: 10.3390/v14112462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that infects between 40% and 95% of the population worldwide, usually without symptoms. The host immune response keeps the virus in a latent stage, although HCMV can reactivate in an inflammatory context, which could result in sequential lytic/latent viral cycles during the lifetime and thereby participate in HCMV genomic diversity in humans. The high level of HCMV intra-host genomic variability could participate in the oncomodulatory role of HCMV where the virus will favor the development and spread of cancerous cells. Recently, an oncogenic role of HCMV has been highlighted in which the virus will directly transform primary cells; such HCMV strains are named high-risk (HR) HCMV strains. In light of these new findings, this review defines the criteria that characterize HR-HCMV strains and their molecular as well as the phenotypic impact on the infected cell and its tumor microenvironment.
Collapse
|
6
|
Therachiyil L, Hussein OJ, Uddin S, Korashy HM. Regulation of the aryl hydrocarbon receptor in cancer and cancer stem cells of gynecological malignancies: An update on signaling pathways. Semin Cancer Biol 2022; 86:1186-1202. [PMID: 36252938 DOI: 10.1016/j.semcancer.2022.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 01/27/2023]
Abstract
Gynecological malignancies are a female type of cancers that affects the reproductive system. Cancer metastasis or recurrence mediated by cellular invasiveness occurs at advanced stages of cancer progression. Cancer Stem Cells (CSCs) enrichment in tumors leads to chemoresistance, which results in cancer mortality. Exposure to environmental pollutants such as polycyclic aromatic hydrocarbons is associated with an increased the risk of CSC enrichment in gynecological cancers. One of the important pathways that mediates the metabolism and bioactivation of these environmental chemicals is the transcription factor, aryl hydrocarbon receptor (AhR). The present review explores the molecular mechanisms regulating the crosstalk and interaction of the AhR with cancer-related signaling pathways, such as apoptosis, epithelial-mesenchymal transition, immune checkpoints, and G-protein-coupled receptors in several gynecological malignancies such as ovarian, uterine, endometrial, and cervical cancers. The review also discusses the potential of targeting the AhR pathway as a novel chemotherapy for gynecological cancers.
Collapse
Affiliation(s)
- Lubna Therachiyil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Ola J Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
7
|
Glathar AR, Oyelakin A, Gluck C, Bard J, Sinha S. p63 Directs Subtype-Specific Gene Expression in HPV+ Head and Neck Squamous Cell Carcinoma. Front Oncol 2022; 12:879054. [PMID: 35712470 PMCID: PMC9192977 DOI: 10.3389/fonc.2022.879054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
The complex heterogeneity of head and neck squamous cell carcinoma (HNSCC) reflects a diverse underlying etiology. This heterogeneity is also apparent within Human Papillomavirus-positive (HPV+) HNSCC subtypes, which have distinct gene expression profiles and patient outcomes. One aggressive HPV+ HNSCC subtype is characterized by elevated expression of genes involved in keratinization, a process regulated by the oncogenic transcription factor ΔNp63. Furthermore, the human TP63 gene locus is a frequent HPV integration site and HPV oncoproteins drive ΔNp63 expression, suggesting an unexplored functional link between ΔNp63 and HPV+ HNSCC. Here we show that HPV+ HNSCCs can be molecularly stratified according to ΔNp63 expression levels and derive a ΔNp63-associated gene signature profile for such tumors. We leveraged RNA-seq data from p63 knockdown cells and ChIP-seq data for p63 and histone marks from two ΔNp63high HPV+ HNSCC cell lines to identify an epigenetically refined ΔNp63 cistrome. Our integrated analyses reveal crucial ΔNp63-bound super-enhancers likely to mediate HPV+ HNSCC subtype-specific gene expression that is anchored, in part, by the PI3K-mTOR pathway. These findings implicate ΔNp63 as a key regulator of essential oncogenic pathways in a subtype of HPV+ HNSCC that can be exploited as a biomarker for patient stratification and treatment choices.
Collapse
|
8
|
Jasrotia R, Dhanjal DS, Bhardwaj S, Sharma P, Chopra C, Singh R, Kumar A, Mubayi A, Kumar D, Kumar R, Goyal A. Nanotechnology based vaccines: Cervical cancer management and perspectives. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Lin X, Wang F, Chen J, Liu J, Lin YB, Li L, Chen CB, Xu Q. N 6-methyladenosine modification of CENPK mRNA by ZC3H13 promotes cervical cancer stemness and chemoresistance. Mil Med Res 2022; 9:19. [PMID: 35418160 PMCID: PMC9008995 DOI: 10.1186/s40779-022-00378-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/01/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Stemness and chemoresistance contribute to cervical cancer recurrence and metastasis. In the current study, we determined the relevant players and role of N6-methyladenine (m6A) RNA methylation in cervical cancer progression. METHODS The roles of m6A RNA methylation and centromere protein K (CENPK) in cervical cancer were analyzed using bioinformatics analysis. Methylated RNA immunoprecipitation was adopted to detect m6A modification of CENPK mRNA. Human cervical cancer clinical samples, cell lines, and xenografts were used for analyzing gene expression and function. Immunofluorescence staining and the tumorsphere formation, clonogenic, MTT, and EdU assays were performed to determine cell stemness, chemoresistance, migration, invasion, and proliferation in HeLa and SiHa cells, respectively. Western blot analysis, co-immunoprecipitation, chromatin immunoprecipitation, and luciferase reporter, cycloheximide chase, and cell fractionation assays were performed to elucidate the underlying mechanism. RESULTS Bioinformatics analysis of public cancer datasets revealed firm links between m6A modification patterns and cervical cancer prognosis, especially through ZC3H13-mediated m6A modification of CENPK mRNA. CENPK expression was elevated in cervical cancer, associated with cancer recurrence, and independently predicts poor patient prognosis [hazard ratio = 1.413, 95% confidence interval = 1.078 - 1.853, P = 0.012]. Silencing of CENPK prolonged the overall survival time of cervical cancer-bearing mice and improved the response of cervical cancer tumors to chemotherapy in vivo (P < 0.001). We also showed that CENPK was directly bound to SOX6 and disrupted the interactions of CENPK with β-catenin, which promoted β-catenin expression and nuclear translocation, facilitated p53 ubiquitination, and led to activation of Wnt/β-catenin signaling, but suppression of the p53 pathway. This dysregulation ultimately enhanced the tumorigenic pathways required for cell stemness, DNA damage repair pathways necessary for cisplatin/carboplatin resistance, epithelial-mesenchymal transition involved in metastasis, and DNA replication that drove tumor cell proliferation. CONCLUSIONS CENPK was shown to have an oncogenic role in cervical cancer and can thus serve as a prognostic indicator and novel target for cervical cancer treatment.
Collapse
Affiliation(s)
- Xian Lin
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 Guangdong China
| | - Feng Wang
- Outpatient Department, Fujian Hospital of People’s Armed Police, Fujian Medical University, Fuzhou, 350014 China
| | - Jian Chen
- Shenzhen Key Laboratory of Immunity and Inflammatory Diseases, Peking University Shenzhen Hospital, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036 Guangdong China
| | - Jing Liu
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
| | - Yi-Bin Lin
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
| | - Li Li
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
| | - Chuan-Ben Chen
- Department of Radiation Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
| | - Qin Xu
- Departments of Gynecology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, Fujian Medical University, Fuzhou, 350014 China
| |
Collapse
|
10
|
Regauer S, Reich O. The origin of Human Papillomavirus (HPV) - induced cervical squamous cancer. Curr Opin Virol 2021; 51:111-118. [PMID: 34655910 DOI: 10.1016/j.coviro.2021.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
Most research models of HPV-associated squamous cervical carcinogenesis focus on stratified glycogenated squamous epithelium, a permissive environment for HPV-life-cycle completion, while immature squamous metaplastic epithelium and reserve cells as targets of HPV-infection have received less attention. Subcolumnar reserve cells of urogenital sinus origin with a CK17/p63-phenotype serve as the primary stem cell for squamous metaplasia. The area of manifest or potential squamous metaplasia, referred to as transformation zone, is the site where most squamous cancers occur after a transforming HPV infection of proliferating reserve cells and/or metaplastic epithelium. Improper use of terminology, in particular confusion of transformation zone with transition zone (synonymous: squamous-columnar junction or SCJ), as well as poorly substantiated postulates of a stem cell niche at the squamous-columnar junction with 'embryonic stem cell markers' have complicated understanding of HPV-related squamous carcinogenesis. Reserve cells as target cells and reservoirs of HPV should move into future research focus.
Collapse
Affiliation(s)
- Sigrid Regauer
- Diagnostic and Research Institute of Pathology, Medical University Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria.
| | - Olaf Reich
- Department of Obstetrics and Gynecology, Medical University Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
11
|
Qiu J, Hu F, Shao T, Guo Y, Dai Z, Nie H, Olasunkanmi OI, Qi Y, Chen Y, Lin L, Zhao W, Zhong Z, Wang Y. Blocking of EGFR Signaling Is a Latent Strategy for the Improvement of Prognosis of HPV-Induced Cancer. Front Oncol 2021; 11:633794. [PMID: 34646755 PMCID: PMC8503613 DOI: 10.3389/fonc.2021.633794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
Human papillomavirus (HPV) is a double-stranded DNA (dsDNA) virus, and its high-risk subtypes increase cancer risks. However, the mechanism of HPV infection and pathogenesis still remain unclear. Therefore, understanding the molecular mechanisms and the pathogenesis of HPV are crucial in the prevention of HPV-related cancers. In this study, we analyzed cervix squamous cell carcinoma (CESC) and head and neck carcinoma (HNSC) combined data to investigate various HPV-induced cancer common features. We showed that epidermal growth factor receptor (EGFR) was downregulated in HPV-positive (HPV+) cancer, and that HPV+ cancer patients exhibited better prognosis than HPV-negative (HPV-) cancer patients. Our study also showed that TP53 mutation rate is lower in HPV+ cancer than in HPV- cancer and that TP53 can be modulated by HPV E7 protein. However, there was no significant difference in the expression of wildtype TP53 in both groups. Subsequently, we constructed HPV-human interaction network and found that EGFR is a critical factor. From the network, we also noticed that EGFR is regulated by HPV E7 protein and hsa-miR-944. Moreover, while phosphorylated EGFR is associated with a worse prognosis, EGFR total express level is not significantly correlated with prognosis. This indicates that EGFR activation will induce a worse outcome in HPV+ cancer patients. Further enrichment analysis showed that EGFR downstream pathway and cancer relative pathway are diversely activated in HPV+ cancer and HPV- cancer. In summary, HPV E7 protein downregulates EGFR that downregulates phosphorylated EGFR and inhibit EGFR-related pathways which in turn and consequently induce better prognosis.
Collapse
Affiliation(s)
- Jianfa Qiu
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Feifei Hu
- Department of Obstetrics, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tingting Shao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuqiang Guo
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Zongmao Dai
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Huanhuan Nie
- Department of Microbiology, Harbin Medical University, Harbin, China
| | | | - Yue Qi
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Changes in Stem Cell Regulation and Epithelial Organisation during Carcinogenesis and Disease Progression in Gynaecological Malignancies. Cancers (Basel) 2021; 13:cancers13133349. [PMID: 34283069 PMCID: PMC8268501 DOI: 10.3390/cancers13133349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Recent advances in our understanding of the stem cell potential in adult tissues have far-reaching implications for cancer research, and this creates new opportunities for the development of new therapeutic strategies. Here we outline changes in stem cell biology that characterize main gynaecological malignancies, ovarian, endometrial, and cervical cancer, and focus on specific differences between them. We highlight the importance of the local niche environment as a driver of malignant transformation in addition to mutations in key cancer-driving genes. Patient-derived organoids capture in vitro main aspects of cancer tissue architecture and stemness regulatory mechanisms, thus providing a valuable new platform for a personalized approach in the treatment of gynecological malignancies. This review summarizes the main achievement and formulates remaining open questions in this fast-evolving research field. Abstract Gynaecological malignancies represent a heterogeneous group of neoplasms with vastly different aetiology, risk factors, molecular drivers, and disease outcomes. From HPV-driven cervical cancer where early screening and molecular diagnostics efficiently reduced the number of advanced-stage diagnosis, prevalent and relatively well-treated endometrial cancers, to highly aggressive and mostly lethal high-grade serous ovarian cancer, malignancies of the female genital tract have unique presentations and distinct cell biology features. Recent discoveries of stem cell regulatory mechanisms, development of organoid cultures, and NGS analysis have provided valuable insights into the basic biology of these cancers that could help advance new-targeted therapeutic approaches. This review revisits new findings on stemness and differentiation, considering main challenges and open questions. We focus on the role of stem cell niche and tumour microenvironment in early and metastatic stages of the disease progression and highlight the potential of patient-derived organoid models to study key events in tumour evolution, the appearance of resistance mechanisms, and as screening tools to enable personalisation of drug treatments.
Collapse
|
13
|
Budhwani M, Turrell G, Yu M, Frazer IH, Mehdi AM, Chandra J. Immune-Inhibitory Gene Expression is Positively Correlated with Overall Immune Activity and Predicts Increased Survival Probability of Cervical and Head and Neck Cancer Patients. Front Mol Biosci 2021; 8:622643. [PMID: 33834038 PMCID: PMC8021786 DOI: 10.3389/fmolb.2021.622643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 02/05/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Limited immunotherapy options are approved for the treatment of cervical cancer and only 10-25% of patients respond effectively to checkpoint inhibition monotherapy. To aid the development of novel therapeutic immune targets, we aimed to explore survival-associated immune biomarkers and co-expressed immune networks in cervical cancer. Methods: Using The Cancer Genome Atlas (TCGA) Cervical Squamous Cell Carcinoma (CESC) data (n = 304), we performed weighted gene co-expression network analysis (WGCNA), and determined which co-expressed immune-related genes and networks are associated with survival probability in CESC patients under conventional therapy. A "Pan-Immune Score" and "Immune Suppression Score" was generated based on expression of survival-associated co-expressed immune networks and immune suppressive genes, which were subsequently tested for association with survival probablity using the TCGA Head Neck Squamous Cell Carcinoma (HNSCC) data (n = 528), representing a second SCC cancer type. Results: In CESC, WGCNA identified a co-expression module enriched in immune response related genes, including 462 genes where high expression was associated with increased survival probability, and enriched for genes associated with T cell receptor, cytokine and chemokine signaling. However, a high level of expression of 43 of the genes in this module was associated with decreased survival probability but were not enriched in particular pathways. Separately, we identified 20 genes associated with immune suppression including inhibitory immune checkpoint and regulatory T cell-related genes, where high expression was associated with increased survival probability. Expression of these 20 immune suppressive genes (represented as "Immune Suppression Score") was highly correlated with expression of overall survival-associated immune genes (represented as "Pan-Immune Score"). However, high expression of seven immune suppression genes, including TWEAK-R, CD73, IL1 family and TGFb family genes, was significantly associated with decreased survival probability. Both scores also significantly associated with survival probability in HNSCC, and correlated with the previously established "Immunophenoscore." Conclusion: CESC and HNSCC tumors expressing genes predictive of T cell infiltrates (hot tumors) have a better prognosis, despite simultaneous expression of many immune inhibitory genes, than tumors lacking expression of genes associated with T cell infiltrates (cold tumors) whether or not these tumor express immune inhibitory genes.
Collapse
Affiliation(s)
- Megha Budhwani
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Gavin Turrell
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Meihua Yu
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ian H Frazer
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ahmed M Mehdi
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| | - Janin Chandra
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, Australia
| |
Collapse
|