1
|
Meena K, Babu R, Pancholi B, Garabadu D. Exploring therapeutic potential of claudin in Flavivirus infection: A review on current advances and future perspectives. Int J Biol Macromol 2025; 309:142936. [PMID: 40203926 DOI: 10.1016/j.ijbiomac.2025.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Flavivirus such as Dengue, Zika, West Nile, Japanese encephalitis, and yellow fever virus, composed of single-stranded positive-sense RNA, predominantly contaminated through arthropods. Flavivirus infection characterises from asymptomatic signs to severe hemorrhagic fever and encephalitis. The host's immune system detects these viruses and provides a defence mechanism to sustain their life and growth. However, flaviviruses through different mechanisms compromise the host's immune defence. The current pharmacotherapeutic strategies against Flavivirus infection target different stages of the Flavivirus life cycle and its proteins. On the contrary, the host's immune defence mechanism is equally important to restrict their growth. It has been suggested that flaviviruses compromise claudins to sustain their life and growth inside the mammalian cells. This review primarily focuses on the effect of Flavivirus on claudins (CLDNs), transmembrane proteins that form tight junctions in mammalian cells. CLDNs are crucial in viral entry and pathogenesis by regulating paracellular permeability, particularly in tissues and the blood-brain barrier. Recent studies indicate that the Dengue and Zika viruses can potentially be treated by targeting specific CLDNs-specifically CLDN 1, CLDN 5, and CLDN 7 to inhibit viral entry and fusion. Additionally, it highlights the current challenges and future prospects in developing claudin-based antiviral agents against Flavivirus infections.
Collapse
Affiliation(s)
- Kiran Meena
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | - Raja Babu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India
| | | | - Debapriya Garabadu
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
2
|
Katz R, Nam NM, de Lima Campos T, Indenbaum V, Terenteva S, Hang DTT, Hoi LT, Danielli A, Lustig Y, Schwartz E, Tong HV, Sklan EH. Circulating lncRNAs as biomarkers for severe dengue using a machine learning approach. J Infect 2025; 90:106471. [PMID: 40090592 DOI: 10.1016/j.jinf.2025.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVES Dengue virus (DENV) infection is a significant global health concern, causing severe morbidity and mortality. While many cases present as a mild febrile illness, some progress to life-threatening severe dengue (SD). Early intervention is essential to improve outcomes, but current predictive methods lack specificity, burdening healthcare systems in endemic regions. Circulating long non-coding RNAs (lncRNAs) have emerged as stable and promising biomarkers. This study explored the use of lncRNAs as predictive markers for SD. METHODS Differential expression and qPCR arrays were employed to identify lncRNAs associated with SD. Candidate lncRNAs were validated, and their plasma levels were measured in a cohort of Vietnamese dengue patients (n =377) and healthy controls (n=128) at admission. Machine learning algorithms were applied to predict the probability of SD progression. RESULTS The predictive model demonstrated high sensitivity and specificity, with an area under the curve (AUC) of 0.98 (95% CI: 0.96-1.0). At admission, it accurately identified 17 of 18 patients who later died as high-risk, compared to traditional warning signs, which flagged only 9 of these cases. CONCLUSIONS Our findings suggest that this panel of lncRNAs has the potential to predict SD, which could help reduce healthcare burden and improve patient management in endemic countries.
Collapse
Affiliation(s)
- Rodolfo Katz
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nguyen Minh Nam
- 103 Military Hospital, Vietnam Military Medical University, Hanoi, Vietnam
| | - Tulio de Lima Campos
- Bioinformatics Core Facility, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife PE, Brazil
| | - Victoria Indenbaum
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Sophie Terenteva
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Dinh Thi Thu Hang
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Le Thi Hoi
- Hanoi Medical University, Hanoi, Vietnam
| | - Amos Danielli
- Faculty of Engineering, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan, Israel
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel; School of Public Health, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Schwartz
- The Institute of Tropical Medicine, Sheba Medical Center, Ramat Gan, Israel; Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam; Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
3
|
Lam F, Leisegang MS, Brandes RP. LncRNAs Are Key Regulators of Transcription Factor-Mediated Endothelial Stress Responses. Int J Mol Sci 2024; 25:9726. [PMID: 39273673 PMCID: PMC11395311 DOI: 10.3390/ijms25179726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
The functional role of long noncoding RNAs in the endothelium is highly diverse. Among their many functions, regulation of transcription factor activity and abundance is one of the most relevant. This review summarizes the recent progress in the research on the lncRNA-transcription factor axes and their implications for the vascular endothelium under physiological and pathological conditions. The focus is on transcription factors critical for the endothelial response to external stressors, such as hypoxia, inflammation, and shear stress, and their lncRNA interactors. These regulatory interactions will be exemplified by a selected number of lncRNAs that have been identified in the endothelium under physiological and pathological conditions that are influencing the activity or protein stability of important transcription factors. Thus, lncRNAs can add a layer of cell type-specific function to transcription factors. Understanding the interaction of lncRNAs with transcription factors will contribute to elucidating cardiovascular disease pathologies and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Frederike Lam
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Matthias S Leisegang
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Goethe University, Institute for Cardiovascular Physiology, Frankfurt, Germany
- German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| |
Collapse
|
4
|
Li X, Liao C, Wu J, Yi B, Zha R, Deng Q, Xu J, Guo C, Lu J. Distinct serum exosomal miRNA profiles detected in acute and asymptomatic dengue infections: A community-based study in Baiyun District, Guangzhou. Heliyon 2024; 10:e31546. [PMID: 38807894 PMCID: PMC11130723 DOI: 10.1016/j.heliyon.2024.e31546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Background In recent years, research on exosomal miRNAs has provided new insights into exploring the mechanism of viral infection and disease prevention. This study aimed to investigate the serum exosomal miRNA expression profile of dengue-infected individuals through a community survey of dengue virus (DENV) infection. Methods A seroprevalence study of 1253 healthy persons was first conducted to ascertain the DENV infection status in Baiyun District, Guangzhou. A total of 18 serum samples, including 6 healthy controls (HC), 6 asymptomatic DENV infections (AsymptDI), and 6 confirmed dengue fever patients (AcuteDI), were collected for exosome isolation and then sRNA sequencing. Through bioinformatics analysis, we discovered distinct serum exosomal miRNA profiles among the different groups and identified differentially expressed miRNAs (DEMs). These findings were further validated by qRT-PCR. Results The community survey of DENV infection indicated that the DENV IgG antibody positivity rate among the population was 11.97 % in the study area, with asymptomatic infected individuals accounting for 93.06 % of the anti-DENV IgG positives. The age and Guangzhou household registration were associated with DENV IgG antibody positivity by logistic regression analysis. Distinct miRNA profiles were observed between healthy individuals and DENV infections. A total of 1854 miRNAs were identified in 18 serum exosome samples from the initial analysis of the sequencing data. Comparative analysis revealed 23 DEMs comprising 5 upregulated and 18 downregulated miRNAs in the DENV-infected group (mergedDI). In comparison to AcuteDI, 18 upregulated miRNAs were identified in AsymptDI. Moreover, functional enrichment of the predicted target genes of DEMs indicated that these miRNAs were involved in biological processes and pathways related to cell adhesion, focal adhesion, endocytosis, and ECM-receptor interaction. Eight DEMs were validated by qRT-PCR. Conclusion The Baiyun District of Guangzhou exhibits a notable proportion of asymptomatic DENV infections as suggested in other research, highlighting the need for enhanced monitoring and screening of asymptomatic persons and the elderly. Differential miRNA expression among healthy, symptomatic and asymptomatic DENV-infected individuals suggests their potential as biomarkers for distinguishing DENV infection and offers new avenues of investigating the mechanisms underlying DENV asymptomatic infections.
Collapse
Affiliation(s)
- Xiaokang Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Conghui Liao
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiani Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Boyang Yi
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Renyun Zha
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiang Deng
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianhua Xu
- Guangzhou Baiyun District Center for Disease Control and Prevention, Guangzhou, 510445, China
| | - Cheng Guo
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China
- Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, 571199, China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| |
Collapse
|
5
|
Tu Y, Wang L, Wang X, Wu W, Tu Y, Zou D, Deng Y, Qi J, Cao C, Xu D, Chai Y, Zhu Y, Zhang J, Sun J, Lai F, He L. LncRNA-WAKMAR2 regulates expression of CLDN1 to affect skin barrier through recruiting c-Fos. Contact Dermatitis 2023; 88:188-200. [PMID: 36461623 DOI: 10.1111/cod.14256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/31/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND Chronic actinic dermatitis (CAD) is an immune-mediated photo-allergic skin disease. In the clinic, the treatment of this disease is hampered by the lack of proper understanding of the skin barrier dysfunction mechanism. OBJECTIVE To illuminate the mechanism of skin barrier dysfunction in CAD. METHODS Transcriptome sequencing and protein profiling were used to detect skin barrier injury-related genes. RNA pull down, a promoter-reporter gene assay, and chromatin isolation by RNA purification-sequencing were used to elucidate the effect of WAKMAR2 in skin barrier functionality. RESULTS Transcriptome sequencing from patient's tissues showed a significantly decreased expression of WAKMAR2. Down-regulation of WAKMAR2 destroyed the keratinocyte barrier. Moreover, WAKMAR2 can directly bind to the c-Fos protein. This novel long non-coding RNA (LncRNA)-protein complexes were targeted to the CLDN1 promotor. Overexpression of WAKMAR2 enhanced the promoter activity of CLDN1, while the addition of AP-1 inhibitor could reverse this phenomenon. Furthermore, our in vivo results suggested that expression of WAKMAR2 was required for the repair of skin damage in mice induced by ultraviolet irradiation. CONCLUSIONS We identified a crucial LncRNA (WAKMAR2) for the protection of the skin barrier in vitro and in vivo. Mechanically, it can specifically interact with c-Fos protein for the regulation of CLDN1, a finding which could be applied for CAD treatment.
Collapse
Affiliation(s)
- Yunhua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Dermatology, The Second People's Hospital of Guiyang, Guiyang, China
| | - Li Wang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaoli Wang
- Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wenjuan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dandan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuanyuan Deng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jue Qi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Can Cao
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanjie Chai
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yun Zhu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Fan Lai
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, Center for Life Science, School of Life Sciences, Yunnan University, Kunming, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
6
|
Kansakar U, Gambardella J, Varzideh F, Avvisato R, Jankauskas SS, Mone P, Matarese A, Santulli G. miR-142 Targets TIM-1 in Human Endothelial Cells: Potential Implications for Stroke, COVID-19, Zika, Ebola, Dengue, and Other Viral Infections. Int J Mol Sci 2022; 23:10242. [PMID: 36142146 PMCID: PMC9499484 DOI: 10.3390/ijms231810242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
T-cell immunoglobulin and mucin domain 1 (TIM-1) has been recently identified as one of the factors involved in the internalization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in human cells, in addition to angiotensin-converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), neuropilin-1, and others. We hypothesized that specific microRNAs could target TIM-1, with potential implications for the management of patients suffering from coronavirus disease 2019 (COVID-19). By combining bioinformatic analyses and functional assays, we identified miR-142 as a specific regulator of TIM-1 transcription. Since TIM-1 has been implicated in the regulation of endothelial function at the level of the blood-brain barrier (BBB) and its levels have been shown to be associated with stroke and cerebral ischemia-reperfusion injury, we validated miR-142 as a functional modulator of TIM-1 in human brain microvascular endothelial cells (hBMECs). Taken together, our results indicate that miR-142 targets TIM-1, representing a novel strategy against cerebrovascular disorders, as well as systemic complications of SARS-CoV-2 and other viral infections.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Fahimeh Varzideh
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Roberta Avvisato
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Stanislovas S. Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | | | - Gaetano Santulli
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- Department of Molecular Pharmacology, Institute for Neuroimmunology and Inflammation, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
7
|
Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neurological deficit and endothelial cell dysfunction after subarachnoid hemorrhage via the KLF3-AS1/miR-83-5p/TCF7L2 axis. Exp Neurol 2022; 356:114151. [PMID: 35738418 DOI: 10.1016/j.expneurol.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND New data are accumulating on the effects of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in cerebrovascular diseases. We explored the potential role of KLF3-AS1-containing bone marrow MSC-EVs (BMSC-EVs) in a rat model of subarachnoid hemorrhage (SAH). METHODS A rat model of SAH was established by endovascular perforation method, into which KLF3-AS1-containing EVs from BMSCs or miR-183-5p mimic were injected. Further, brain microvascular endothelial cells (BMECs) were induced by oxyhemoglobin (OxyHb) to simulate in vitro setting, which were co-cultured with KLF3-AS1-containing EVs from BMSCs. Effects of KLF3-AS1 on neurological deficits in vivo and endothelial cell dysfunction in vitro were investigated. We also performed bioinformatics analysis to predict downstream factors miR-183-5p and TCF7L2, which were verified by RIP, RNA pull-down and luciferase activity assays. RESULTS BMSC-EVs was demonstrated to alleviate neurological deficits in SAH rats and endothelial cell dysfunction in OxyHb-induced BMECs. In addition, BMSC-EVs were shown to deliver KLF3-AS1 to BMECs, where KLF3-AS1 bound to miR-183-5p and miR-183-5p targeted TCF7L2. In vivo results confirmed that BMSC-EVs regulated the KLF3-AS1/miR-183-5p/TCF7L2 signaling axis to attenuate neurological deficit and endothelial dysfunction after SAH. CONCLUSION Overall, KLF3-AS1 delivered by BMSC-EVs upregulate TCF7L2 expression by binding to miR-138-5p, thus attenuating neurological deficits and endothelial dysfunction after SAH.
Collapse
|
8
|
Reinhold AK, Salvador E, Förster CY, Birklein F, Rittner HL. Microvascular Barrier Protection by microRNA-183 via FoxO1 Repression: A Pathway Disturbed in Neuropathy and Complex Regional Pain Syndrome. THE JOURNAL OF PAIN 2022; 23:967-980. [PMID: 34974173 DOI: 10.1016/j.jpain.2021.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Blood nerve barrier disruption and edema are common in neuropathic pain as well as in complex regional pain syndrome (CRPS). MicroRNAs (miRNA) are epigenetic multitarget switches controlling neuronal and non-neuronal cells in pain. The miR-183 complex attenuates hyperexcitability in nociceptors, but additional non-neuronal effects via transcription factors could contribute as well. This study explored exosomal miR-183 in CRPS and murine neuropathy, its effect on the microvascular barrier via transcription factor FoxO1 and tight junction protein claudin-5, and its antihyperalgesic potential. Sciatic miR-183 decreased after CCI. Substitution with perineural miR-183 mimic attenuated mechanical hypersensitivity and restored blood nerve barrier function. In vitro, serum from CCI mice und CRPS patients weakened the microvascular barrier of murine cerebellar endothelial cells, increased active FoxO1 and reduced claudin-5, concomitant with a lack of exosomal miR-183 in CRPS patients. Cellular stress also compromised the microvascular barrier which was rescued either by miR-183 mimic via FoxO1 repression or by prior silencing of Foxo1. PERSPECTIVE: Low miR-183 leading to barrier impairment via FoxO1 and subsequent claudin-5 suppression is a new aspect in the pathophysiology of CRPS and neuropathic pain. This pathway might help untangle the wide symptomatic range of CRPS and nurture further research into miRNA mimics or FoxO1 inhibitors.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| | - Ellaine Salvador
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany; University Hospital Würzburg, Department of Neurosurgery, Tumorbiology Laboratory, Würzburg, Germany
| | - Carola Y Förster
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany
| | - Frank Birklein
- Mainz University Hospitals, Department of Neurology, Mainz, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anesthesiology, Intensive Care, Emergency Care and Pain Management, Center for Interdisciplinary Pain Medicine, Würzburg, Germany.
| |
Collapse
|
9
|
Krishnamoorthy P, Raj AS, Kumar P, Das N, Kumar H. Host and viral non-coding RNAs in dengue pathogenesis. Rev Med Virol 2022; 32:e2360. [PMID: 35510480 DOI: 10.1002/rmv.2360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus that causes frequent outbreaks in tropical countries. Due to the four different serotypes and ever-mutating RNA genome, it is challenging to develop efficient therapeutics. Early diagnosis is crucial to prevent the severe form of dengue, leading to mortality. In the past decade, rapid advancement in the high throughput sequencing technologies has shed light on the crucial regulating role of non-coding RNAs (ncRNAs), also known as the "dark matter" of the genome, in various pathological processes. In addition to the human host ncRNAs like microRNAs and circular RNAs, DENV also produces ncRNAs such as subgenomic flaviviral RNAs that can modulate the virus life cycle and regulate disease outcomes. This review outlines the advances in understanding the interplay between the human host and DENV ncRNAs, their regulation of the innate immune system of the host, and the prospects of the ncRNAs in clinical applications such as dengue diagnosis and promising therapeutics.
Collapse
Affiliation(s)
- Pandikannan Krishnamoorthy
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Athira S Raj
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Pramod Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Nilanjana Das
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India
| | - Himanshu Kumar
- Department of Biological Sciences, Laboratory of Immunology and Infectious Disease Biology, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, Madhya Pradesh, India.,Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
10
|
Cai W, Pan Y, Cheng A, Wang M, Yin Z, Jia R. Regulatory Role of Host MicroRNAs in Flaviviruses Infection. Front Microbiol 2022; 13:869441. [PMID: 35479613 PMCID: PMC9036177 DOI: 10.3389/fmicb.2022.869441] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that affect mRNA abundance or translation efficiency by binding to the 3′UTR of the mRNA of the target gene, thereby participating in multiple biological processes, including viral infection. Flavivirus genus consists of small, positive-stranded, single-stranded RNA viruses transmitted by arthropods, especially mosquitoes and ticks. The genus contains several globally significant human/animal pathogens, such as Dengue virus, Japanese encephalitis virus, West Nile virus, Zika virus, Yellow fever virus, Tick-borne encephalitis virus, and Tembusu virus. After flavivirus invades, the expression of host miRNA changes, exerting the immune escape mechanism to create an environment conducive to its survival, and the altered miRNA in turn affects the life cycle of the virus. Accumulated evidence suggests that host miRNAs influence flavivirus replication and host–virus interactions through direct binding of viral genomes or through virus-mediated host transcriptome changes. Furthermore, miRNA can also interweave with other non-coding RNAs, such as long non-coding RNA and circular RNA, to form an interaction network to regulate viral replication. A variety of non-coding RNAs produced by the virus itself exert similar function by interacting with cellular RNA and viral RNA. Understanding the interaction sites between non-coding RNA, especially miRNA, and virus/host genes will help us to find targets for antiviral drugs and viral therapy.
Collapse
Affiliation(s)
- Wenjun Cai
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- *Correspondence: Anchun Cheng,
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- Renyong Jia,
| |
Collapse
|
11
|
Liu T, Li H, Li Y, Wang L, Chen G, Pu G, Guo X, Cho WC, Fasihi Harandi M, Zheng Y, Luo X. Integrative Analysis of RNA Expression and Regulatory Networks in Mice Liver Infected by Echinococcus multilocularis. Front Cell Dev Biol 2022; 10:798551. [PMID: 35399512 PMCID: PMC8989267 DOI: 10.3389/fcell.2022.798551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The larvae of Echinococcus multilocularis causes alveolar echinococcosis, which poses a great threat to the public health. However, the molecular mechanisms underlying the host and parasite interactions are still unclear. Exploring the transcriptomic maps of mRNA, miRNA and lncRNA expressed in the liver in response to E. multilocularis infection will help us to understand its pathogenesis. Using liver perfusion, different cell populations including the hepatic cells, hepatic stellate cells and Kupffer cells were isolated from mice interperitoneally inoculated with protoscoleces. Their transcriptional profiles including lncRNAs, miRNAs and mRNAs were done by RNA-seq. Among these cell populations, the most differentially-expressed (DE) mRNA, lncRNAs and miRNAs were annotated and may involve in the pathological processes, mainly including metabolic disorders, immune responses and liver fibrosis. Following the integrative analysis of 38 differentially-expressed DEmiRNAs and 8 DElncRNAs, the lncRNA-mRNA-miRNA networks were constructed, including F63-miR-223-3p-Fbxw7/ZFP36/map1b, F63-miR-27-5p-Tdrd6/Dip2c/Wdfy4 and IFNgAS1-IFN-γ. These results unveil the presence of several potential lncRNA-mRNA-miRNA axes during E. multilocularis infection, and further exploring of these axes may contribute to better understanding of the pathogenic mechanisms.
Collapse
Affiliation(s)
- Tingli Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Hong Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Yanping Li
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Liqun Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Guoliang Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Guiting Pu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Majid Fasihi Harandi
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Yadong Zheng
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
- *Correspondence: Xuenong Luo, ; Yadong Zheng,
| | - Xuenong Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou, China
- *Correspondence: Xuenong Luo, ; Yadong Zheng,
| |
Collapse
|
12
|
Leaky Gut Syndrome Is Associated with Endotoxemia and Serum (1→3)-β-D-Glucan in Severe Dengue Infection. Microorganisms 2021; 9:microorganisms9112390. [PMID: 34835514 PMCID: PMC8625530 DOI: 10.3390/microorganisms9112390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
The hallmark of severe dengue infection is the increased vascular permeability and hemodynamic alteration that might be associated with an intestinal permeability defect. However, the mechanisms underlying the gastrointestinal-related symptoms of dengue are not well characterized. A prospective observational study was conducted on patients with dengue who were categorized according to: (i) febrile versus critical phase and (ii) hospitalized patients with versus without the warning signs to evaluate the gut barrier using lactulose-to-mannitol excretion ratio (LEMR). Serum endotoxins, (1→3)-β-D-glucan (BG), and inflammatory parameters were measured. A total of 48 and 38 patients were enrolled in febrile illness and critical phase, respectively, while 22 and 64 patients presented with or without the warning signs, respectively. At enrollment, a positive LEMR test was found in 20 patients (91%) with warning signs, regardless of phase of infection. Likewise, serum endotoxins and BG, the indirect biomarkers for leaky gut, prominently increased in patients who developed severe dengue when compared with the non-severe dengue (endotoxins, 399.1 versus 143.4 pg/mL (p < 0.0001); BG, 123 versus 73.8 pg/mL (p = 0.016)). Modest impaired intestinal permeability occurred in dengue patients, particularly those with warning signs, and were associated with endotoxemia and elevated BG. Thus, leaky gut syndrome might be associated with severity of dengue infection.
Collapse
|
13
|
Jia P, Pan H, Cui K, Jia K, Yi M. MicroRNA expression profiling of sea perch brain cells reveals the roles of microRNAs in autophagy induced by RGNNV infection. JOURNAL OF FISH DISEASES 2021; 44:1305-1314. [PMID: 34048029 DOI: 10.1111/jfd.13389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Nervous necrosis virus (NNV) is one of the most destructive fish viruses and affects more than 120 marine and freshwater teleost species. However, the pathogenesis of NNV has not been made clear. MicroRNAs (miRNAs) play important roles in the regulation of viral infection. To understand the roles and regulation patterns of miRNAs in NNV infection, high-throughput sequencing was carried out in Lateolabrax japonicus brain (LJB) cells with or without red-spotted grouper NNV (RGNNV) infection at 12 and 24 hr. Here, we identified 59 known and 61 novel differentially expressed miRNAs (DE miRNAs) between mock and RGNNV-infected LJB cells. KEGG pathway analysis showed that the target genes of DE miRNAs were significantly enriched in immune-related signalling pathways, such as autophagy, mitophagy and TGF-beta signalling pathways. The expression patterns of four DE miRNAs (lja-miR-145, lja-miR-182, lja-miR-183 and lja-miR-187) were verified by qRT-PCR both in vivo and in vitro. We found that lja-miR-145 promoted RGNNV proliferation, while lja-miR-183 suppressed RGNNV proliferation. Furthermore, lja-miR-145 facilitated RGNNV-induced autophagy activation, whereas lja-miR-183 repressed autophagy in LJB cells as measured by LC3B-II/I and p62 protein levels. All these results indicate the involvement of lja-miR-145 and lja-miR-183 in RGNNV-induced autophagy. In conclusion, this study provides evidence for the important roles of miRNAs in NNV infection and a basis for uncovering the molecular regulation mechanism of NNV-induced autophagy.
Collapse
Affiliation(s)
- Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hongbo Pan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kuopeng Cui
- Estuarine Fisheries Research Institute of Doumen, Zhuhai, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|