2
|
Ngwaga T, Chauhan D, Salberg AG, Shames SR. Effector-mediated subversion of proteasome activator (PA)28αβ enhances host defense against Legionella pneumophila under inflammatory and oxidative stress conditions. PLoS Pathog 2023; 19:e1011473. [PMID: 37347796 PMCID: PMC10321654 DOI: 10.1371/journal.ppat.1011473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/05/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
Legionella pneumophila is a natural pathogen of amoebae that causes Legionnaires' Disease in immunocompromised individuals via replication within macrophages. L. pneumophila virulence and intracellular replication hinges on hundreds of Dot/Icm-translocated effector proteins, which are essential for biogenesis of the replication-permissive Legionella-containing vacuole (LCV). However, effector activity can also enhance mammalian host defense via effector-triggered immunity. The L. pneumophila effector LegC4 is important for virulence in amoebae but enhances host defense against L. pneumophila in the mouse lung and, uniquely, within macrophages activated with either tumor necrosis factor (TNF) or interferon (IFN)-γ. The mechanism by which LegC4 potentiates cytokine-mediated host defense in macrophages is unknown. Here, we found that LegC4 enhances cytokine-mediated phagolysosomal fusion with Legionella-containing vacuole (LCV) and binds host proteasome activator (PA)28α, which forms a heterooligomer with PA28β to facilitate ubiquitin-independent proteasomal degradation of oxidant-damaged (carbonylated) proteins. We found that oxidative stress was sustained in the presence of LegC4 and that the LegC4 restriction phenotype was relieved in PA28αβ-deficient macrophages and in the lungs of mice in vivo. Our data also show that oxidative stress is sufficient for LegC4-mediated restriction in macrophages producing PA28αβ. PA28αβ has been traditionally associated with antigen presentation; however, our data support a novel mechanism whereby effector-mediated subversion of PA28αβ enhances cell-autonomous host defense against L. pneumophila under inflammatory and oxidative stress conditions. This work provides a solid foundation to evaluate induced proteasome regulators as mediators of innate immunity.
Collapse
Affiliation(s)
- Tshegofatso Ngwaga
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Deepika Chauhan
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Abigail G. Salberg
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Stephanie R. Shames
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
3
|
Shames SR. Eat or Be Eaten: Strategies Used by Legionella to Acquire Host-Derived Nutrients and Evade Lysosomal Degradation. Infect Immun 2023; 91:e0044122. [PMID: 36912646 PMCID: PMC10112212 DOI: 10.1128/iai.00441-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
To replicate within host cells, bacterial pathogens must acquire host-derived nutrients while avoiding degradative antimicrobial pathways. Fundamental insights into bacterial pathogenicity have been revealed by bacteria of the genus Legionella, which naturally parasitize free-living protozoa by establishing a membrane-bound replicative niche termed the Legionella-containing vacuole (LCV). Biogenesis of the LCV and intracellular replication rely on rapid evasion of the endocytic pathway and acquisition of host-derived nutrients, much of which is mediated by bacterial effector proteins translocated into host cells by a Dot/Icm type IV secretion system. Billions of years of co-evolution with eukaryotic hosts and broad host tropism have resulted in expansion of the Legionella genome to accommodate a massive repertoire of effector proteins that promote LCV biogenesis, safeguard the LCV from endolysosomal maturation, and mediate the acquisition of host nutrients. This minireview is focused on the mechanisms by which an ancient intracellular pathogen leverages effector proteins and hijacks host cell biology to obtain essential host-derived nutrients and prevent lysosomal degradation.
Collapse
Affiliation(s)
- Stephanie R. Shames
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Clinical and Laboratory Diagnosis of Legionella Pneumonia. Diagnostics (Basel) 2023; 13:diagnostics13020280. [PMID: 36673091 PMCID: PMC9858276 DOI: 10.3390/diagnostics13020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
Legionella pneumonia is a relatively rare but extremely progressive pulmonary infection with high mortality. Traditional cultural isolation remains the gold standard for the diagnosis of Legionella pneumonia. However, its harsh culture conditions, long turnaround time, and suboptimal sensitivity do not meet the clinical need for rapid and accurate diagnosis, especially for critically ill patients. So far, pathogenic detection techniques including serological assays, urinary antigen tests, and mass spectrometry, as well as nucleic acid amplification technique, have been developed, and each has its own advantages and limitations. This review summarizes the clinical characteristics and imaging findings of Legionella pneumonia, then discusses the advances, advantages, and limitations of the various pathogenetic detection techniques used for Legionella pneumonia diagnosis. The aim is to provide rapid and accurate guiding options for early identification and diagnosis of Legionella pneumonia in clinical practice, further easing healthcare burden.
Collapse
|
5
|
Kostic A, Cukovic K, Stankovic L, Raskovic Z, Nestorovic J, Savic D, Simovic A, Prodanovic T, Zivojinovic S, Andrejevic S, Erovic I, Djordjevic Z, Rsovac S, Sazdanovic P, Stojkovic A. The Different Clinical Courses of Legionnaires' Disease in Newborns from the Same Maternity Hospital. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1150. [PMID: 36143827 PMCID: PMC9502702 DOI: 10.3390/medicina58091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022]
Abstract
In children, the incidence of Legionnaires' disease (LD) is unknown, hospital-acquired LD is associated with clinical risk factors and environmental risk, and children with cell-mediated immune deficiency are at high risk of infection. Both newborns were born in the same delivery room; stayed in the same hospital room where they were cared for, bathed, and breastfed; were male; were born on time, with normal birth weight, and with high Apgar score at birth; and survived this severe infection (L. pneumophila, serogroup 2-15) but with different clinical courses. In neonate 1, bleeding in the brain, thrombosis of deep pelvic veins, and necrosis of the lungs, which left behind cystic and cavernous changes in the lungs, were found, while neonate 2 suffered from pneumonia alone. The only difference in risk factors for LD between these two newborns is the number of days of illness until the start of azithromycin treatment (sixth versus the third day of illness). We suggest that a change in the guidelines for diagnosing and treating community-acquired pneumonia and hospital-acquired pneumonia in newborns is needed in terms of mandatory routine testing for Legionella pneumophila. Early initiation of macrolide therapy is crucial for the outcome of LD in the newborn.
Collapse
Affiliation(s)
- Andrijana Kostic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Katarina Cukovic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Lidija Stankovic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Zorica Raskovic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Nestorovic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragana Savic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandra Simovic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Tijana Prodanovic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Suzana Zivojinovic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sladjana Andrejevic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | | | - Zorana Djordjevic
- Department of Epidemiology, University Clinical Center, 34000 Kragujevac, Serbia
| | - Snezana Rsovac
- University Children’s Clinic Tirsova, Pediatric and Neonatal Intensive Care, 11000 Belgrade, Serbia
- Department of Pediatrics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Predrag Sazdanovic
- University Clinical Center, Clinic of Gynecology and Obstetrics, 34000 Kragujevac, Serbia
- Department of Anatomy, Faculty of Medical Sciences, University of Kragujevac, 11000 Belgrade, Serbia
| | - Andjelka Stojkovic
- University Clinical Center, Clinic of Pediatrics, 34000 Kragujevac, Serbia
- Department of Pediatrics, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
6
|
Lockwood DC, Amin H, Costa TRD, Schroeder GN. The Legionella pneumophila Dot/Icm type IV secretion system and its effectors. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35639581 DOI: 10.1099/mic.0.001187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To prevail in the interaction with eukaryotic hosts, many bacterial pathogens use protein secretion systems to release virulence factors at the host–pathogen interface and/or deliver them directly into host cells. An outstanding example of the complexity and sophistication of secretion systems and the diversity of their protein substrates, effectors, is the Defective in organelle trafficking/Intracellular multiplication (Dot/Icm) Type IVB secretion system (T4BSS) of
Legionella pneumophila
and related species.
Legionella
species are facultative intracellular pathogens of environmental protozoa and opportunistic human respiratory pathogens. The Dot/Icm T4BSS translocates an exceptionally large number of effectors, more than 300 per
L. pneumophila
strain, and is essential for evasion of phagolysosomal degradation and exploitation of protozoa and human macrophages as replicative niches. Recent technological advancements in the imaging of large protein complexes have provided new insight into the architecture of the T4BSS and allowed us to propose models for the transport mechanism. At the same time, significant progress has been made in assigning functions to about a third of
L. pneumophila
effectors, discovering unprecedented new enzymatic activities and concepts of host subversion. In this review, we describe the current knowledge of the workings of the Dot/Icm T4BSS machinery and provide an overview of the activities and functions of the to-date characterized effectors in the interaction of
L. pneumophila
with host cells.
Collapse
Affiliation(s)
- Daniel C Lockwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
7
|
Iyer S, Das C. The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis. J Biol Chem 2021; 297:101340. [PMID: 34695417 PMCID: PMC8605245 DOI: 10.1016/j.jbc.2021.101340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular pathogen that uses the Dot/Icm Type IV secretion system (T4SS) to translocate many effectors into its host and establish a safe, replicative lifestyle. The bacteria, once phagocytosed, reside in a vacuolar structure known as the Legionella-containing vacuole (LCV) within the host cells and rapidly subvert organelle trafficking events, block inflammatory responses, hijack the host ubiquitination system, and abolish apoptotic signaling. This arsenal of translocated effectors can manipulate the host factors in a multitude of different ways. These proteins also contribute to bacterial virulence by positively or negatively regulating the activity of one another. Such effector-effector interactions, direct and indirect, provide the delicate balance required to maintain cellular homeostasis while establishing itself within the host. This review summarizes the recent progress in our knowledge of the structure-function relationship and biochemical mechanisms of select effector pairs from Legionella that work in opposition to one another, while highlighting the diversity of biochemical means adopted by this intracellular pathogen to establish a replicative niche within host cells.
Collapse
Affiliation(s)
- Shalini Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|