1
|
González-Quevedo A, Lestayo O’Farrill Z, Mustelier Becquer R. Oropouche virus - another antecedent event for Guillain-Barré syndrome? Rev Panam Salud Publica 2025; 49:e23. [PMID: 39980596 PMCID: PMC11836908 DOI: 10.26633/rpsp.2025.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 02/22/2025] Open
Abstract
In May 2024, the Pan American Health Organization issued alerts of increased numbers of cases of Oropouche fever in non-Amazonian regions in Latin America. Following this, an association between Oropouche fever and Guillain-Barré syndrome was reported in three patients in Santiago de Cuba, Cuba. Neurological manifestations have rarely been described in relation to Oropouche virus infection. Previously, encephalitis and meningoencephalitis have been associated with Oropouche virus infection, but now the virus seems also to be associated with Guillain-Barré syndrome. In this article we describe the main factors that could underlie the increased incidence of Oropouche fever and its neurological complications. Oropouche virus should be recognized as a potential pathogen in cases of fever associated with neurological symptoms (meningitis, meningoencephalitis, and Guillain-Barré syndrome). Medical professionals and health systems need to be aware of these complications and the importance of early diagnosis and preparedness, especially during large outbreaks or in patients living in or coming from endemic regions.
Collapse
Affiliation(s)
- Alina González-Quevedo
- Neurobiology DepartmentInstitute of Neurology and NeurosurgeryHavanaCubaNeurobiology Department, Institute of Neurology and Neurosurgery, Havana, Cuba.
| | - Zurina Lestayo O’Farrill
- Neurology DepartmentInstitute of Neurology and NeurosurgeryHavanaCubaNeurology Department, Institute of Neurology and Neurosurgery, Havana, Cuba.
| | - Reinaldo Mustelier Becquer
- Neurology DepartmentInstitute of Neurology and NeurosurgeryHavanaCubaNeurology Department, Institute of Neurology and Neurosurgery, Havana, Cuba.
| |
Collapse
|
2
|
Almeida GM, Silva BM, Arruda E, Sebollela A. Human brain tissue cultures: a unique ex vivo model to unravel the pathogenesis of neurotropic arboviruses. Curr Opin Virol 2025; 70:101453. [PMID: 39954607 DOI: 10.1016/j.coviro.2025.101453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
Arboviruses are transmitted by arthropods, and their spread from endemic to nonendemic regions has been accelerated by deforestation, climate change, and global mobility. Arbovirus infection in human results in symptoms ranging from mild to life-threatening, with the impairment of central nervous system functions being reported in severe cases. Despite its clinical relevance, the mechanisms by which arboviruses led to neural dysfunction are still poorly understood. The lack of a widespread human central nervous system model to study the virus-host interaction challenges the advance of our knowledge on these mechanisms. In this context, human brain-derived ex vivo models have the advantage of preserving cellular diversity, cell connections, and tissue cytoarchitecture found in human brain, raising them as a powerful strategy to elucidate the cellular-molecular alterations underlying brain diseases. Here, we review recent advances in the field of neurotropic arboviruses obtained using ex vivo human brain tissue as the experimental model.
Collapse
Affiliation(s)
- Glaucia M Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Bruna M Silva
- Graduate Program in Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Translational Medicine Research Plataform, Oswaldo Cruz Foundation, University of São Paulo, Ribeirão Preto, Brazil
| | - Eurico Arruda
- Virology Research Center, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Adriano Sebollela
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
3
|
Pieterse L, McDonald M, Abraham R, Griffin DE. Heterogeneous Ribonucleoprotein K Is a Host Regulatory Factor of Chikungunya Virus Replication in Astrocytes. Viruses 2024; 16:1918. [PMID: 39772225 PMCID: PMC11680317 DOI: 10.3390/v16121918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is an emerging, mosquito-borne arthritic alphavirus increasingly associated with severe neurological sequelae and long-term morbidity. However, there is limited understanding of the crucial host components involved in CHIKV replicase assembly complex formation, and thus virus replication and virulence-determining factors, within the central nervous system (CNS). Furthermore, the majority of CHIKV CNS studies focus on neuronal infection, even though astrocytes represent the main cerebral target. Heterogeneous ribonucleoprotein K (hnRNP K), an RNA-binding protein involved in RNA splicing, trafficking, and translation, is a regulatory component of alphavirus replicase assembly complexes, but has yet to be thoroughly studied in the context of CHIKV infection. We identified the hnRNP K CHIKV viral RNA (vRNA) binding site via sequence alignment and performed site-directed mutagenesis to generate a mutant, ΔhnRNPK-BS1, with disrupted hnRNPK-vRNA binding, as verified through RNA coimmunoprecipitation and RT-qPCR. CHIKV ΔhnRNPK-BS1 demonstrated hampered replication in both NSC-34 neuronal and C8-D1A astrocytic cultures. In astrocytes, disruption of the hnRNPK-vRNA interaction curtailed viral RNA transcription and shut down subgenomic RNA translation. Our study demonstrates that hnRNP K serves as a crucial RNA-binding host factor that regulates CHIKV replication through the modulation of subgenomic RNA translation.
Collapse
Affiliation(s)
- Lisa Pieterse
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (L.P.); (D.E.G.)
| | - Maranda McDonald
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Rachy Abraham
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA; (L.P.); (D.E.G.)
| |
Collapse
|
4
|
da Costa AL, Prieto-Oliveira P, Duarte-Barbosa M, Andreata-Santos R, Peter CM, Prolo de Brito T, Antoneli F, Durães-Carvalho R, Briones MRS, Maricato JT, Zanotto PMA, Jacob Machado D, Janini LMR. The Relationship between HERV, Interleukin, and Transcription Factor Expression in ZIKV Infected versus Uninfected Trophoblastic Cells. Cells 2024; 13:1491. [PMID: 39273061 PMCID: PMC11394337 DOI: 10.3390/cells13171491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Zika virus (ZIKV) is an arbovirus with maternal, sexual, and TORCH-related transmission capabilities. After 2015, Brazil had the highest number of ZIVK-infected pregnant women who lost their babies or delivered them with Congenital ZIKV Syndrome (CZS). ZIKV triggers an immune defense in the placenta. This immune response counts with the participation of interleukins and transcription factors. Additionally, it has the potential involvement of human endogenous retroviruses (HERVS). Interleukins are immune response regulators that aid immune tolerance and support syncytial structure development in the placenta, where syncytin receptors facilitate vital cell-to-cell fusion events. HERVs are remnants of ancient viral infections that integrate into the genome and produce syncytin proteins crucial for placental development. Since ZIKV can infect trophoblast cells, we analyzed the relationship between ZIKV infection, HERV, interleukin, and transcription factor modulations in the placenta. To investigate the impact of ZIKV on trophoblast cells, we examined two cell types (BeWo and HTR8) infected with ZIKV-MR766 (African) and ZIKV-IEC-Paraíba (Asian-Brazilian) using Taqman and RT2 Profiler PCR Array assays. Our results indicate that early ZIKV infection (24-72 h) does not induce differential interleukins, transcription factors, and HERV expression. However, we show that the expression of a few of these host defense genes appears to be linked independently of ZIKV infection. Future studies involving additional trophoblastic cell lineages and extended infection timelines will illuminate the dynamic interplay between ZIKV, HERVs, interleukins, and transcription factors in the placenta.
Collapse
Affiliation(s)
- Anderson Luís da Costa
- Laboratory of Retrovirology, Discipline of Infectology, Department of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04039-032, Brazil; (A.L.d.C.); (M.D.-B.)
| | - Paula Prieto-Oliveira
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA; (P.P.-O.); (D.J.M.)
- Computational Intelligence to Predict Health and Environmental Risks Center, University of North Carolina at Charlotte, 9201 University City BLVD, Charlotte, NC 28223, USA
| | - Márcia Duarte-Barbosa
- Laboratory of Retrovirology, Discipline of Infectology, Department of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04039-032, Brazil; (A.L.d.C.); (M.D.-B.)
| | - Robert Andreata-Santos
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| | - Cristina M. Peter
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (F.A.); (M.R.S.B.)
| | - Thamires Prolo de Brito
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| | - Fernando Antoneli
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (F.A.); (M.R.S.B.)
| | - Ricardo Durães-Carvalho
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo 04039-032, Brazil
| | - Marcelo R. S. Briones
- Center for Medical Bioinformatics, Federal University of São Paulo, São Paulo 04039-032, Brazil; (F.A.); (M.R.S.B.)
| | - Juliana T. Maricato
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| | - Paolo M. A. Zanotto
- Laboratory of Molecular Evolution and Bioinformatics, Department of Microbiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Denis Jacob Machado
- Department of Bioinformatics and Genomics, College of Computing and Informatics, University of North Carolina at Charlotte, 9331 Robert D. Snyder Rd., Charlotte, NC 28223, USA; (P.P.-O.); (D.J.M.)
- Computational Intelligence to Predict Health and Environmental Risks Center, University of North Carolina at Charlotte, 9201 University City BLVD, Charlotte, NC 28223, USA
| | - Luiz M. R. Janini
- Laboratory of Retrovirology, Discipline of Infectology, Department of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo 04039-032, Brazil; (A.L.d.C.); (M.D.-B.)
- Laboratory of Retrovirology, Discipline of Microbiology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo 04039-032, Brazil; (R.A.-S.); (C.M.P.); (T.P.d.B.); (R.D.-C.); (J.T.M.)
| |
Collapse
|
5
|
Wesselmann KM, Postigo-Hidalgo I, Pezzi L, de Oliveira-Filho EF, Fischer C, de Lamballerie X, Drexler JF. Emergence of Oropouche fever in Latin America: a narrative review. THE LANCET. INFECTIOUS DISEASES 2024; 24:e439-e452. [PMID: 38281494 DOI: 10.1016/s1473-3099(23)00740-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 01/30/2024]
Abstract
Since its discovery in 1955, the incidence and geographical spread of reported Oropouche virus (OROV) infections have increased. Oropouche fever has been suggested to be one of the most important vector-borne diseases in Latin America. However, both literature on OROV and genomic sequence availability are scarce, with few contributing laboratories worldwide. Three reassortant OROV glycoprotein gene variants termed Iquitos, Madre de Dios, and Perdões virus have been described from humans and non-human primates. OROV predominantly causes acute febrile illness, but severe neurological disease such as meningoencephalitis can occur. Due to unspecific symptoms, laboratory diagnostics are crucial. Several laboratory tests have been developed but robust commercial tests are hardly available. Although OROV is mainly transmitted by biting midges, it has also been detected in several mosquito species and a wide range of vertebrate hosts, which likely facilitates its widespread emergence. However, potential non-human vertebrate reservoirs have not been systematically studied. Robust animal models to investigate pathogenesis and immune responses are not available. Epidemiology, pathogenesis, transmission cycle, cross-protection from infections with OROV reassortants, and the natural history of infection remain unclear. This Review identifies Oropouche fever as a neglected disease and offers recommendations to address existing knowledge gaps, enable risk assessments, and ensure effective public health responses.
Collapse
Affiliation(s)
- Konrad M Wesselmann
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France
| | - Ignacio Postigo-Hidalgo
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Pezzi
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France; Centre National de Référence (CNR) des Arbovirus, Marseille, France
| | - Edmilson F de Oliveira-Filho
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carlo Fischer
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xavier de Lamballerie
- Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207), Marseille, France; Centre National de Référence (CNR) des Arbovirus, Marseille, France
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Centre for Infection Research (DZIF), Berlin, Germany.
| |
Collapse
|
6
|
Modulation of HERV Expression by Four Different Encephalitic Arboviruses during Infection of Human Primary Astrocytes. Viruses 2022; 14:v14112505. [PMID: 36423114 PMCID: PMC9694637 DOI: 10.3390/v14112505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Human retroelements (HERVs) are retroviral origin sequences fixed in the human genome. HERVs induction is associated with neurogenesis, cellular development, immune activation, and neurological disorders. Arboviruses are often associated with the development of encephalitis. The interplay between these viruses and HERVs has not been fully elucidated. In this work, we analyzed RNAseq data derived from infected human primary astrocytes by Zika (ZikV), Mayaro (MayV), Oropouche (OroV) and Chikungunya (ChikV) viruses, and evaluated the modulation of HERVs and their nearby genes. Our data show common HERVs expression modulation by both alphaviruses, suggesting conserved evolutionary routes of transcription regulation. A total of 15 HERVs were co-modulated by the four arboviruses, including the highly upregulated HERV4_4q22. Data on the upregulation of genes nearby to these elements in ChikV, MayV and OroV infections were also obtained, and interaction networks were built. The upregulation of 14 genes common among all viruses was observed in the networks, and 93 genes between MayV and ChikV. These genes are related to cellular processes such as cellular replication, cytoskeleton, cell vesicle traffic and antiviral response. Together, our results support the role of HERVs induction in the transcription regulation process of genes during arboviral infections.
Collapse
|
7
|
Peinado RDS, Eberle RJ, Arni RK, Coronado MA. A Review of Omics Studies on Arboviruses: Alphavirus, Orthobunyavirus and Phlebovirus. Viruses 2022; 14:2194. [PMID: 36298749 PMCID: PMC9607206 DOI: 10.3390/v14102194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Since the intricate and complex steps in pathogenesis and host-viral interactions of arthropod-borne viruses or arboviruses are not completely understood, the multi-omics approaches, which encompass proteomics, transcriptomics, genomics and metabolomics network analysis, are of great importance. We have reviewed the omics studies on mosquito-borne viruses of the Togaviridae, Peribuyaviridae and Phenuiviridae families, specifically for Chikungunya, Mayaro, Oropouche and Rift Valley Fever viruses. Omics studies can potentially provide a new perspective on the pathophysiology of arboviruses, contributing to a better comprehension of these diseases and their effects and, hence, provide novel insights for the development of new antiviral drugs or therapies.
Collapse
Affiliation(s)
- Rafaela dos S. Peinado
- Multiuser Center for Biomolecular Innovation, Department of Physics, Sao Paulo State University, Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Raphael J. Eberle
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Raghuvir K. Arni
- Multiuser Center for Biomolecular Innovation, Department of Physics, Sao Paulo State University, Sao Jose do Rio Preto 15054-000, SP, Brazil
| | - Mônika A. Coronado
- Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
8
|
Barichello T, Iovino F. Editorial: Host-Pathogen Interaction in the Central Nervous System. Front Cell Infect Microbiol 2021; 11:790761. [PMID: 35004356 PMCID: PMC8740900 DOI: 10.3389/fcimb.2021.790761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, TX, United States
- Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Santa Catarina, Brazil
| | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|