1
|
Wang Q, Wang BY, Williams S, Xie H. Diversity and Characteristics of the Oral Microbiome Associated with Self-Reported Ancestral/Ethnic Groups. Int J Mol Sci 2024; 25:13303. [PMID: 39769067 PMCID: PMC11677810 DOI: 10.3390/ijms252413303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Periodontitis disproportionately affects genetic ancestral/ethnic groups. To characterize the oral microbiome from different genetic ancestral/ethnic groups, we collected 161 dental plaque samples from self-identified African Americans (AAs), Caucasian Americans (CAs), and Hispanic Americans (HAs) with clinical gingival health or biofilm-induced gingivitis on an intact periodontium. DNA was extracted from these samples, and then DNA libraries were prepared and sequenced using an Illumina NovaSeq high-throughput sequencer. We found significant differences in the diversity and abundance of microbial taxa among dental plaque samples of the AA, CA, and HA groups. We also identified unique microbial species in a self-reported ancestral/ethnic group. Moreover, we revealed variations in functional potentials of the oral microbiome among the three ancestral/ethnic groups, with greater diversity and abundance of antibiotic-resistant genes in the oral microbiome and significantly more genes involved in the modification of glycoconjugates and oligo- and polysaccharides in AAs than in CAs and HAs. Our observations suggest that the variations in the oral microbiome associated with ancestral/ethnic backgrounds may directly relate to their virulence potential including their abilities to induce host immune responses and to resist antibiotic treatment. These finding can be a steppingstone for developing precision medicine and personalized periodontal prevention/treatment and for reducing oral health disparities.
Collapse
Affiliation(s)
- Qingguo Wang
- School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX 77504, USA;
| | - She’Neka Williams
- School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA;
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
2
|
Wang Q, Wang BY, Williams S, Xie H. Diversity and characteristics of the oral microbiome influenced by race and ethnicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617037. [PMID: 39416080 PMCID: PMC11482769 DOI: 10.1101/2024.10.07.617037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Periodontitis disproportionately affects racial/ethnic populations. Besides social determinants contributing to disparities in periodontal health, variations of oral microbial communities may also be a key factor influencing oral immune responses. To characterize the oral microbiome from different racial/ethnic populations, we collected 161 dental plaque samples from African Americans (AAs), Caucasian Americans (CAs), and Hispanic Americans (HAs) with clinical gingival health or biofilm-induced gingivitis on an intact periodontium. Using metagenomic sequencing, we found significant difference in diversity and abundance of microbial taxa in the dental plaque samples from AA, CA, and HA groups and unique microbial species that can only be detected in a particular racial/ethnic group. Moreover, we revealed racial/ethnic associated variations in functional potential of the oral microbiome, showing that diversity and abundance of antibiotic resistant genes were greater in the oral microbiome of the AAs than those in CAs or HAs, and that the AAs exhibited higher levels of genes involving in modification of glycoconjugates, oligo- and polysaccharides. These findings indicate more complex and higher virulence potential oral microbiome in AA and HA populations, which likely contributes to higher prevalence of periodontitis in AAs and HAs.
Collapse
Affiliation(s)
- Qingguo Wang
- School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
3
|
Bai J, Zhou C, Liu Y, Ding M, Zhang Z, Chen Z, Feng P, Song J. Relationship between serum uric acid levels and periodontitis-A cross-sectional study. PLoS One 2024; 19:e0310243. [PMID: 39331593 PMCID: PMC11432880 DOI: 10.1371/journal.pone.0310243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
OBJECTIVES Whether there is an association between serum uric acid level (sUA) and periodontitis remains unclear. The aim of this study was to investigate the association between moderate/severe periodontitis and sUA in US adults. MATERIALS AND METHODS A total of 3398 participants were included in the National Health and Nutrition Examination Survey (NHANES) from 2009 to 2014. The independent variable was sUA and the dependent variable was periodontitis. SUA for continuous variables, periodontitis as classification variables. Covariate including social demographic variables, life style, systemic diseases, etc. Multiple linear regression models were used to investigate the distribution of differences in covariates between different independent groups. To investigate the association between serum uric acid levels and moderate/severe periodontitis, three models were used (Model 1: unadjusted model; Model 2: adjusted for age, sex, and race/ethnicity; Model 3: adjusted for age, sex, race/ethnicity, education, household income/poverty ratio, smoking behavior, alcohol consumption, dental floss frequency, obesity, hypertension, diabetes, high cholesterol, hyperlipidemia, and sleep disorders). RESULTS Among the 3398 patients, 42.5% had moderate/severe periodontitis. Multivariate logistic regression analysis showed that sUA was significantly associated with moderate/severe periodontitis (OR = 1.10, 95%CI: (1.03, 1.16), P = 0.0020) after adjusting for potential confounding factors. In addition, it may vary by race/ethnicity and gender. The association between sUA levels and the prevalence ofperiodontitis was U-shaped in women and non-Hispanic blacks. CONCLUSION sUA level is associated with moderate to severe periodontitis. However, the association between sUA levels and the occurrence of periodontitis in women and non-Hispanic blacks followed a U-shaped curve. CLINICAL RELEVANCE sUA may directly or indirectly contribute to the global burden of periodontal disease, but there is little evidence that sUA is directly related to periodontitis.This study further supports that high uric acid levels are closely related to periodontitis and may contribute to the control of periodontitis. It also provides new insights into whether it can be used as an indicator to assess the risk or progression of periodontitis. More studies are needed to confirm the relationship between sUA and periodontitis.
Collapse
Affiliation(s)
- Jingjing Bai
- Department of Periodontics, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Chenying Zhou
- Department of Periodontics, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ye Liu
- Department of Periodontics, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ming Ding
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhonghua Zhang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhu Chen
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endodontics and Dentistry, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
| | - Ping Feng
- Department of Periodontics, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jukun Song
- Oral and Maxillofacial Surgery, Stomatological Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
4
|
Zhao D, Li MH, Pan T, Guo J, Li J, Shi C, Wang N, Huang H, Wang C, Yang G. Preventive and Therapeutic Potential of Streptococcus cristatus CA119 in Experimental Periodontitis in Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10254-y. [PMID: 38607584 DOI: 10.1007/s12602-024-10254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Periodontitis is an inflammatory condition of the oral cavity caused by a mixed infection of various bacteria, which not only severely affects the alveolar bone and connective tissues but also displays potential correlations with distal intestinal inflammation. In this study, we aimed to elucidate the therapeutic effects of Streptococcus cristatus CA119 on experimental periodontitis in rats and its impact on intestinal morphology. The results demonstrate that CA119 is capable of colonizing the oral cavity and exerting antagonistic effects on Porphyromonas gingivalis and Fusobacterium nucleatum, thus leading to a significant reduction in the oral pathogen load. Following CA119 intervention, there was a significant alleviation of weight loss in rats induced by periodontitis (P < 0.001). CA119 also regulated the expression of IL-6 (P < 0.05), IL-1β (P < 0.001), IL-18 (P < 0.001), COX-2 (P < 0.001), iNOS (P < 0.001), and MCP-1 (P < 0.01) in the gingival tissue. Additionally, CA119 reduced oxidative stress levels in rats and enhanced their antioxidant capacity. Microcomputed tomography (micro-CT) and histological analysis revealed that CA119 significantly reduced alveolar bone loss and reversed the downregulation of OPG/RANKL (P < 0.001). Furthermore, CA119 exhibited a significant protective effect against intestinal inflammation induced by periodontal disease and improved the colonic morphology in rats. In conclusion, this study demonstrates the role of CA119 as a potential oral probiotic in the prevention and treatment of experimental periodontitis, underscoring the potential of probiotics as a complementary approach to traditional periodontal care.
Collapse
Affiliation(s)
- Dongyu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Han Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jialin Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
5
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. Microbiol Spectr 2024; 12:e0348223. [PMID: 38230927 PMCID: PMC10846039 DOI: 10.1128/spectrum.03482-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024] Open
Abstract
Periodontitis has recently been defined as a dysbiotic disease caused by an imbalanced oral microbiota. The transition from commensal microbial communities to periodontitis-associated ones requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis. To determine the role of S. cristatus in altering the interactions of P. gingivalis with other oral bacteria in a complex context, we collected dental plaque samples from patients with periodontitis and assigned them to two groups based on the ratios of S. cristatus and P. gingivalis. We then characterized the microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and compared the oral microbial composition and functional capabilities of the group with high S. cristatus-P. gingivalis ratios with the low ratio group. Taxonomic annotation revealed significant differences in the microbial composition at both the genus and species levels between the low and high S. cristatus-P. gingivalis ratio groups. Notably, a higher microbial diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. Furthermore, the antibiotic resistance gene profiles of the two groups were also distinct, with a significantly increased abundance of the genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios. It, therefore, indicates that the S. cristatus-P. gingivalis ratios influenced the virulence potential of the oral microbiome. Our work shows that enhancing the S. cristatus-P. gingivalis ratio in oral microbial communities can be an attractive approach for revising the dysbiotic oral microbiome.IMPORTANCEPeriodontitis, one of the most common chronic diseases, is linked to several systemic diseases, such as cardiovascular disease and diabetes. Although Porphyromonas gingivalis is a keystone pathogen that causes periodontitis, its levels, interactions with accessory bacteria and pathobionts in the oral microbiome, and its association with the pathogenic potential of the microbial communities are still not well understood. In this study, we revealed the role of Streptococcus cristatus and the ratios of S. cristatus and P. gingivalis in modulating the oral microbiome to facilitate a deeper understanding of periodontitis and its progression. The study has important clinical implications as it laid a foundation for developing novel non-antibiotic therapies against P. gingivalis and improving the efficiency of periodontal treatments.
Collapse
Affiliation(s)
- Qingguo Wang
- School of Applied Computational Sciences, Meharry Medical College, Nashville, Tennessee, USA
| | - Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Siddharth Pratap
- School of Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Wang Q, Wang BY, Pratap S, Xie H. Oral microbiome associated with differential ratios of Porphyromonas gingivalis and Streptococcus cristatus. RESEARCH SQUARE 2023:rs.3.rs-3266326. [PMID: 37674718 PMCID: PMC10479432 DOI: 10.21203/rs.3.rs-3266326/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Periodontitis has been recently defined as a dysbiotic disease resulting from imbalanced oral microbiota. The transition of microbial communities from commensal to periodontitis-associated ones likely requires colonization by specific pathogens, including Porphyromonas gingivalis. We previously reported an antagonistic relationship between Streptococcus cristatus and P. gingivalis and the role of S. cristatus in inhibition of the biofilm formation, invasion, and gingipain enzymatic activity of P. gingivalis. Given the importance of P. gingivalis as a keystone pathogen of polymicrobial communities, the determinants of P. gingivalis levels, its interaction with the core microbiota, and association with the pathogenic potential of the microbial communities need to be addressed. Results This present study intends to determine the role of S. cristatus in altering interactions of P. gingivalis with other oral bacteria in a complex context. We collected dental plaque samples from periodontitis patients and assigned them into two groups based on their ratios of S. cristatus and P. gingivalis. We then characterized microbial profiles of the dental plaque samples using shotgun metagenomic sequencing and subsequently compared oral microbial composition and functional capabilities between groups with high or low S. cristatus-P. gingivalis ratios. Taxonomic annotation showed significant differences in microbial compositions at both genus and species levels between the two groups. Notably, a higher microbial composition diversity was observed in the samples with low S. cristatus-P. gingivalis ratios. The antibiotic resistance gene profiles of the two groups are also distinct, with significantly increased diversity and abundance of antibiotic resistance genes in the dental plaque samples with low S. cristatus-P. gingivalis ratios, which likely lead to elevated virulence potential. Conclusions Overall, our work highlights the importance of S. cristatus-P. gingivalis ratios in influencing the virulence of the oral microbiome. Approaches to enhance S. cristatus-P. gingivalis ratios in oral microbial communities will be attractive for revising the dysbiotic oral microbiome.
Collapse
Affiliation(s)
| | - Bing-Yan Wang
- University of Texas Health Science Center at Houston
| | | | | |
Collapse
|
7
|
Wang BY, Burgardt G, Parthasarathy K, Ho DK, Weltman RL, Tribble GD, Hong J, Cron S, Xie H. Influences of race/ethnicity in periodontal treatment response and bacterial distribution, a cohort pilot study. FRONTIERS IN ORAL HEALTH 2023; 4:1212728. [PMID: 37377523 PMCID: PMC10291508 DOI: 10.3389/froh.2023.1212728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Objectives Periodontitis disproportionately affects different racial and ethnic populations. We have previously reported the higher levels of Porphyromonas gingivalis and lower ratios of Streptococcus cristatus to P. gingivalis may contribute to periodontal health disparities. This prospective cohort study was designed to investigate if ethnic/racial groups responded differently to non-surgical periodontal treatment and if the treatment outcomes correlated to the bacterial distribution in patients with periodontitis before treatment. Methods This prospective cohort pilot study was carried out in an academic setting, at the School of Dentistry, University of Texas Health Science Center at Houston. Dental plaque was collected from a total of 75 African Americans, Caucasians and Hispanics periodontitis patients in a 3-year period. Quantitation of P. gingivalis and S. cristatus was carried out using qPCR. Clinical parameters including probing depths and clinical attachment levels were determined before and after nonsurgical treatment. Data were analyzed using one-way ANOVA, the Kruskal-Wallis test, the paired samples t-test and the chi-square test. Results The gains in clinical attachment levels after treatment significantly differed amongst the 3 groups-Caucasians responded most favorably, followed by African-Americans, lastly Hispanics, while numbers of P. gingivalis were highest in Hispanics, followed by African-Americans, and lowest in Caucasians (p = 0.015). However, no statistical differences were found in the numbers of S. cristatus amongst the 3 groups. Conclusion Differential response to nonsurgical periodontal treatment and distribution of P. gingivalis are present in different ethnic/racial groups with periodontitis.
Collapse
Affiliation(s)
- Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Grayson Burgardt
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kavitha Parthasarathy
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, United States
| | - Daniel K. Ho
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Robin L. Weltman
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Clinical Sciences, University of Nevada, Las Vegas, NV, United States
| | - Gena D. Tribble
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jianming Hong
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Stanley Cron
- School of Nursing, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN, United States
| |
Collapse
|
8
|
qPCR Detection and Quantification of Aggregatibacter actinomycetemcomitans and Other Periodontal Pathogens in Saliva and Gingival Crevicular Fluid among Periodontitis Patients. Pathogens 2023; 12:pathogens12010076. [PMID: 36678429 PMCID: PMC9861831 DOI: 10.3390/pathogens12010076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE The detection of special bacterial species in patients with periodontitis is considered useful for clinical diagnosis and treatment. The aim of this study was to investigate the presence of specific periopathogens and investigate whether there is a correlation between the results of different bacterial species in whole saliva and pooled subgingival plaque samples (healthy and diseased sites) from individuals with periodontitis and periodontally healthy subjects. MATERIALS AND METHODS In total, 52 patients were recruited and divided into two groups: non-periodontitis and periodontitis patients. For each group, the following periodontal pathogens were detected using real-time polymerase chain reaction: A. actinomycetemcomitans JP2 clone, A. actinomycetemcomitans non JP2 clone, Porphyromonasgingivalis, and total eubacteria. RESULTS Higher levels of the various studied bacteria were present in both saliva and plaque samples from the periodontitis group in comparison to non-periodontitis subjects. There were significant differences in P. gingivalis and A. actinomycetemcomitans JP2 clones in the saliva of periodontitis patient compared to the control group. Subgingival plaque of diseased sites presented a significant and strong positive correlation between A. actinomycetemcomitans and P. gingivalis. In saliva samples, there was a significant positive correlation between A. actinomycetemcomitans JP2 clone and P. gingivalis (p ≤ 0.002). CONCLUSION Quantifying and differentiating these periodontal species from subgingival plaque and saliva samples showed a good potential as diagnostic markers for periodontal disease. Regarding the prevalence of the studied bacteria, specifically A. actinomycetemcomitans JP2 clone, found in this work, and the high rate of susceptibility to periodontal species in Africa, future larger studies are recommended.
Collapse
|
9
|
Wang BY, Cao A, Ho MH, Wilus D, Sheng S, Meng HW, Guerra E, Hong J, Xie H. Identification of microbiological factors associated with periodontal health disparities. Front Cell Infect Microbiol 2023; 13:1137067. [PMID: 36875522 PMCID: PMC9978005 DOI: 10.3389/fcimb.2023.1137067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
The present study aimed at identifying risk factors associated with periodontitis development and periodontal health disparities with emphasis on differential oral microbiota. The prevalence of periodontitis is recently rising dentate adults in the US, which presents a challenge to oral health and overall health. The risk of developing periodontitis is higher in African Americans (AAs), and Hispanic Americans (HAs) than in Caucasian Americans (CAs). To identify potentially microbiological determinations of periodontal health disparities, we examined the distribution of several potentially beneficial and pathogenic bacteria in the oral cavities of AA, CA, and HA study participants. Dental plaque samples from 340 individuals with intact periodontium were collected prior to any dental treatment, and levels of some key oral bacteria were quantitated using qPCR, and the medical and dental histories of participants were obtained retrospectively from axiUm. Data were analyzed statistically using SAS 9.4, IBM SPSS version 28, and R/RStudio version 4.1.2. Amongst racial/ethnic groups: 1) neighborhood medium incomes were significantly higher in the CA participants than the AA and the HA participants; 2) levels of bleeding on probing (BOP) were higher in the AAs than in the CAs and HAs; 3) Porphyromonas gingivalis levels were higher in the HAs compared to that in the CAs; 4) most P. gingivalis detected in the AAs were the fimA genotype II strain that was significantly associated with higher BOP indexes along with the fimA type IV strain. Our results suggest that socioeconomic disadvantages, higher level of P. gingivalis, and specific types of P. gingivalis fimbriae, particularly type II FimA, contribute to risks for development of periodontitis and periodontal health disparities.
Collapse
Affiliation(s)
- Bing-Yan Wang
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
- *Correspondence: Bing-Yan Wang, ; Hua Xie,
| | - Aize Cao
- School of Applied Computational Sciences, Meharry Medical College, Nashville, TN, United States
| | - Meng-Hsuan Ho
- School of Dentistry, Meharry Medical College, Nashville, TN, United States
| | - Derek Wilus
- School of Graduate Studies, Meharry Medical College, Nashville, TN, United States
| | - Sally Sheng
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hsiu-Wan Meng
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Elissa Guerra
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jianming Hong
- School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Hua Xie
- School of Dentistry, Meharry Medical College, Nashville, TN, United States
- *Correspondence: Bing-Yan Wang, ; Hua Xie,
| |
Collapse
|
10
|
Park SH, Kim K, Cho S, Chung DH, Ahn SJ. Variation in adhesion of Streptococcus mutans and Porphyromonas gingivalis in saliva-derived biofilms on raw materials of orthodontic brackets. Korean J Orthod 2022; 52:278-286. [PMID: 35678009 PMCID: PMC9314218 DOI: 10.4041/kjod21.283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
Objective To evaluate differences in the adhesion levels of the most common oral pathogens, Streptococcus mutans and Porphyromonas gingivalis, in human saliva-derived microcosm biofilms with respect to time and raw materials of orthodontic brackets. Methods The samples were classified into three groups of bracket materials 1) monocrystalline alumina ceramic (CR), 2) stainless steel metal (SS), and 3) polycarbonate plastic (PL), and a hydroxyapatite (HA) group was used to mimic the enamel surface. Saliva was collected from a healthy donor, and saliva-derived biofilms were grown on each sample. A real-time polymerase chain reaction was performed to quantitatively evaluate differences in the attachment levels of total bacteria, S. mutans and P. gingivalis at days 1 and 4. Results Adhesion of S. mutans and P. gingivalis to CR and HA was higher than the other bracket materials (SS = PL < CR = HA). Total bacteria demonstrated higher adhesion to HA than to bracket materials, but no significant differences in adhesion were observed among the bracket materials (CR = SS = PL < HA). From days 1 to 4, the adhesion of P. gingivalis decreased, while that of S. mutans and total bacteria increased, regardless of material type. Conclusions The higher adhesion of oral pathogens, such as S. mutans and P. gingivalis to CR suggests that the use of CR brackets possibly facilitates gingival inflammation and enamel decalcification during orthodontic treatment.
Collapse
Affiliation(s)
- So-Hyun Park
- Department of Orthodontics, Dankook University Jukjeon Dental Hospital, Yongin, Korea
| | - Kyungsun Kim
- Dental Research Institute and Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Soha Cho
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Dong-Hwa Chung
- Department of Orthodontics, Dankook University Jukjeon Dental Hospital, Yongin, Korea
| | - Sug-Joon Ahn
- Dental Research Institute and Department of Orthodontics, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|