1
|
Xie Y, Chen Q, Shan D, Pan X, Hu Y. Unraveling the role of the gut microbiome in pregnancy disorders: insights and implications. Front Cell Infect Microbiol 2025; 15:1521754. [PMID: 40125520 PMCID: PMC11925892 DOI: 10.3389/fcimb.2025.1521754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
The gut microbiota is the collective term for the microorganisms that reside in the human gut. In recent years, advances in sequencing technology and bioinformatics gradually revealed the role of gut microbiota in human health. Dramatic changes in the gut microbiota occur during pregnancy due to hormonal and dietary changes, and these changes have been associated with certain gestational diseases such as preeclampsia (PE) and gestational diabetes mellitus (GDM). Modulation of gut microbiota has also been proposed as a potential treatment for these gestational diseases. The present article aims to review current reports on the association between gut microbiota and gestational diseases, explore possible mechanisms, and discuss the potential of probiotics in gestational diseases. Uncovering the link between gut microbiota and gestational diseases could lead to a new therapeutic approach.
Collapse
Affiliation(s)
- Yupei Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| | - Xiongfei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- West China Second University Hospital, Sichuan University, Shuangliu Institute of Women’s and Children’s Health, Shuangliu Maternal and Child Health Hospital, Chengdu, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, Qingbaijiang Maternal and Child Health Hospital, Chengdu, China
| |
Collapse
|
2
|
Wang F, Zhu Y, Shu H, Zhang X, Duan L, Man D, Wang Y. Astragaloside IV alleviates GDM via regulating gut microbiota and gut microbiota metabolomic. Front Pharmacol 2025; 15:1431240. [PMID: 39885928 PMCID: PMC11780255 DOI: 10.3389/fphar.2024.1431240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025] Open
Abstract
Background Gestational diabetes mellitus (GDM), a severe pregnancy disorder, is a temporary form of diabetes that occurs during gestation. Astragaloside IV (AS IV), a natural and effective composition of Astragalus membranaceus, shows pharmacological effects against diabetes. On the contrary, the effects of AS IV on GDM development are still not clear. This study aims to investigate the role of AS IV in alleviating GDM in rats and determine whether AS IV exerts its anti-GDM properties through the regulation of gut microbiota and metabolite modulation. Methods There were six pregnant SD rats in each of the four groups. First, the GDM model was induced by the streptozotocin (STZ, 45 mg/kg) injection on gestational days (GDs) 1-4, and AS IV intervention (10 mg/kg/d) was administered from 6 days before pregnancy until delivery. The measurements of relevant indicators pertaining to GDM symptoms and reproductive outcomes, along with the 16S rRNA sequencing data and LC-MS-based metabolomic profiles, were assessed across all groups. Results After the 25-day intervention, the GDM model + AS IV group showed significantly decreased fasting blood glucose levels (p = 0.0003), mean insulin levels (p = 0.0001), and insulin resistance index (p = 0.0001). AS IV treatment also decreased the malformation rate (p = 0.0373) and increased the average fetal weight (p = 0.0020) of GDM rats. Compared to the control rats, GDM rats showed a significantly higher abundance of Blautia and Anaerobiospirillum. However, the dramatically elevated abundance of these microorganisms was markedly decreased by AS IV treatment. In contrast, compared to GDM rats without treatment, GDM rats treated with AS IV showed a significantly higher abundance of bacteria (p < 0.05), such as Methanobrevibacter, Dubosiella, and Romboutsia, which are beneficial to the rats. Additionally, we observed dramatically elevated production of metabolites, such as N-acetyl-l-leucine and lithocholic acid, after AS IV treatment through metabolomics analysis (p < 0.05). Furthermore, significant associations between most genera of gut bacteria and the altered levels of the metabolites connected to gut microbiota were also discovered. Conclusion Our study demonstrated that AS IV could be an effective nutritional intervention strategy for targeting gut microbiota and metabolome profiles in GDM and provided experimental evidence supporting the use of AS IV to treat GDM.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongmei Man
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Yanping Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| |
Collapse
|
3
|
Yan Y, Yuan H, Yang F, Na H, Yu X, Liu J, Wang Y. Seabuckthorn polysaccharides mitigate hepatic steatosis by modulating the Nrf-2/HO-1 pathway and gut microbiota. AMB Express 2024; 14:100. [PMID: 39251509 PMCID: PMC11383914 DOI: 10.1186/s13568-024-01756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming a significant global public health threat. Seabuckthorn (Hippophae rhamnoides L.) has been used in traditional Chinese medicine (TCM). The hypolipidemic effects of Seabuckthorn polysaccharides (SP) against high-fat diets (HFD)-induced NAFLD were systematically explored and compared with that of Bifidobacterium lactis V9 (B. Lactis V9). Results showed that HFD-induced alanine transaminase (ALT) and aspartate aminotransferase (AST) levels decreased by 2.8-fold and 4.5-fold, respectively, after SP supplementation. Moreover, the alleviating effect on hepatic lipid accumulation is better than that of B. Lactis V9. The ACC and FASN mRNA levels were significantly reduced by 1.8 fold (P < 0.05) and 2.3 folds (P < 0.05), respectively, while the CPT1α and PPARα mRNA levels was significantly increased by 2.3 fold (P < 0.05) and 1.6 fold (P < 0.05), respectively, after SP administration. SP activated phosphorylated-AMPK and inhibited PPARγ protein expression, improved serum oxidative stress and inflammation (P < 0.05). SP supplementation leads to increased hepatic expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and Superoxide dismutase-2 (SOD-2). Furthermore, SP treatment improved HFD-induced intestinal dysbiosis. Lentisphaerae, Firmicutes, Tenericutes and Peptococcus sp., RC9_gut_group sp., and Parabacteroides sp. of the gut microbiota were significantly associated with hepatic steatosis and indicators related to oxidative stress and inflammation. Therefore, SP can mitigate hepatic lipid accumulation by regulating Nrf-2/HO-1 signaling pathways and gut microbiota. This study offers new evidence supporting the use of SP as a prebiotic treatment for NAFLD.
Collapse
Affiliation(s)
- Yan Yan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Haisheng Yuan
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Fan Yang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Heiya Na
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Xiuling Yu
- Inner Mongolia Tianqi Biotechnology Co., Ltd, Chifeng, 024000, China
| | - Jingran Liu
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Yuzhen Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
4
|
Guo J, Shi W, Li X, Yang B, Qin C, Su L. Comparative Analysis of Gut Microbiomes in Laboratory Chinchillas, Ferrets, and Marmots: Implications for Pathogen Infection Research. Microorganisms 2024; 12:646. [PMID: 38674591 PMCID: PMC11051751 DOI: 10.3390/microorganisms12040646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gut microbes play a vital role in the health and disease of animals, especially in relation to pathogen infections. Chinchillas, ferrets, and marmots are commonly used as important laboratory animals for infectious disease research. Here, we studied the bacterial and fungal microbiota and discovered that chinchillas had higher alpha diversity and a higher abundance of bacteria compared to marmots and ferrets by using the metabarcoding of 16S rRNA genes and ITS2, coupled with co-occurrence network analysis. The dominant microbes varied significantly among the three animal species, particularly in the gut mycobiota. In the ferrets, the feces were dominated by yeast such as Rhodotorula and Kurtzmaniella, while in the chinchillas, we found Teunomyces and Penicillium dominating, and Acaulium, Piromyces, and Kernia in the marmots. Nevertheless, the dominant bacterial genera shared some similarities, such as Clostridium and Pseudomonas across the three animal species. However, there were significant differences observed, such as Vagococcus and Ignatzschineria in the ferrets, Acinetobacter and Bacteroides in the chinchillas, and Bacteroides and Cellvibrio in the marmots. Additionally, our differential analysis revealed significant differences in classification levels among the three different animal species, as well as variations in feeding habitats that resulted in distinct contributions from the host microbiome. Therefore, our data are valuable for monitoring and evaluating the impacts of the microbiome, as well as considering potential applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing 100021, China; (J.G.); (W.S.); (X.L.); (B.Y.); (C.Q.)
| |
Collapse
|
5
|
Lu X, Shi Z, Jiang L, Zhang S. Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology. Front Immunol 2024; 15:1362784. [PMID: 38545107 PMCID: PMC10965710 DOI: 10.3389/fimmu.2024.1362784] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/28/2024] [Indexed: 04/17/2024] Open
Abstract
Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring.
Collapse
Affiliation(s)
- Xiaowen Lu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Zhan Shi
- Department of Obstetrics and Gynecology, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Lingling Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Obstetrics and Gynecology, Key Laboratory of Reproductive Dysfunction, Management of Zhejiang Province, Hangzhou, China
| |
Collapse
|
6
|
Garcia-Gutierrez E, O’Mahony AK, Dos Santos RS, Marroquí L, Cotter PD. Gut microbial metabolic signatures in diabetes mellitus and potential preventive and therapeutic applications. Gut Microbes 2024; 16:2401654. [PMID: 39420751 PMCID: PMC11492678 DOI: 10.1080/19490976.2024.2401654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus can be subdivided into several categories based on origin and clinical characteristics. The most common forms of diabetes are type 1 (T1D), type 2 diabetes (T2D) and gestational diabetes mellitus (GDM). T1D and T2D are chronic diseases affecting around 537 million adults worldwide and it is projected that these numbers will increase by 12% over the next two decades, while GDM affects up to 30% of women during pregnancy, depending on diagnosis methods. These forms of diabetes have varied origins: T1D is an autoimmune disease, while T2D is commonly associated with, but not limited to, certain lifestyle patterns and GDM can result of a combination of genetic predisposition and pregnancy factors. Despite some pathogenic differences among these forms of diabetes, there are some common markers associated with their development. For instance, gut barrier impairment and inflammation associated with an unbalanced gut microbiota and their metabolites may be common factors in diabetes development and progression. Here, we summarize the microbial signatures that have been linked to diabetes, how they are connected to diet and, ultimately, the impact on metabolite profiles resulting from host-gut microbiota-diet interactions. Additionally, we summarize recent advances relating to promising preventive and therapeutic interventions focusing on the targeted modulation of the gut microbiota to alleviate T1D, T2D and GDM.
Collapse
Affiliation(s)
- Enriqueta Garcia-Gutierrez
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
- Departamento de Ingeniería Agronómica, Instituto de Biotecnología Vegetal, ETSIA-Universidad Politécnica de Cartagena, Cartagena, Spain
| | - A. Kate O’Mahony
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- School of Microbiology, University College Cork, Co. Cork, Ireland
| | - Reinaldo Sousa Dos Santos
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Marroquí
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche, Elche, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paul D. Cotter
- Food Biosciences Department, Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, Co. Cork, Ireland
| |
Collapse
|
7
|
Shoer S, Shilo S, Godneva A, Ben-Yacov O, Rein M, Wolf BC, Lotan-Pompan M, Bar N, Weiss EI, Houri-Haddad Y, Pilpel Y, Weinberger A, Segal E. Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines. Nat Commun 2023; 14:5384. [PMID: 37666816 PMCID: PMC10477304 DOI: 10.1038/s41467-023-41042-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023] Open
Abstract
Diabetes and associated comorbidities are a global health threat on the rise. We conducted a six-month dietary intervention in pre-diabetic individuals (NCT03222791), to mitigate the hyperglycemia and enhance metabolic health. The current work explores early diabetes markers in the 200 individuals who completed the trial. We find 166 of 2,803 measured features, including oral and gut microbial species and pathways, serum metabolites and cytokines, show significant change in response to a personalized postprandial glucose-targeting diet or the standard of care Mediterranean diet. These changes include established markers of hyperglycemia as well as novel features that can now be investigated as potential therapeutic targets. Our results indicate the microbiome mediates the effect of diet on glycemic, metabolic and immune measurements, with gut microbiome compositional change explaining 12.25% of serum metabolites variance. Although the gut microbiome displays greater compositional changes compared to the oral microbiome, the oral microbiome demonstrates more changes at the genetic level, with trends dependent on environmental richness and species prevalence in the population. In conclusion, our study shows dietary interventions can affect the microbiome, cardiometabolic profile and immune response of the host, and that these factors are well associated with each other, and can be harnessed for new therapeutic modalities.
Collapse
Affiliation(s)
- Saar Shoer
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Shilo
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Orly Ben-Yacov
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Michal Rein
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Bat Chen Wolf
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Noam Bar
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ervin I Weiss
- Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Prosthodontics, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Yael Houri-Haddad
- Department of Prosthodontics, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel.
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Teixeira RA, Silva C, Ferreira AC, Martins D, Leite-Moreira A, Miranda IM, Barros AS. The Association between Gestational Diabetes and the Microbiome: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:1749. [PMID: 37512921 PMCID: PMC10385443 DOI: 10.3390/microorganisms11071749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Gestational diabetes, affecting about 10% of pregnancies, is characterized by impaired glucose regulation and can lead to complications for health of pregnant women and their offspring. The microbiota, the resident microbes within the body, have been linked to the development of several metabolic conditions. This systematic review with meta-analysis aims to summarize the evidence on the differences in microbiota composition in pregnant women with gestational diabetes and their offspring compared to healthy pregnancies. A thorough search was conducted in the PubMed, Scopus, and Web of Science databases, and data from 21 studies were analyzed utilizing 41 meta-analyses. In the gut microbiota, Bifidobacterium and Alistipes were found to be more abundant in healthy pregnancies, while Roseburia appears to be more abundant in gestational diabetes. The heterogeneity among study findings regarding the microbiota in the meconium is considerable. The placental microbiota exhibited almost no heterogeneity, with an increased abundance of Firmicutes in the gestational diabetes group and a higher abundance of Proteobacteria in the control. The role of the microbiota in gestational diabetes is reinforced by these findings, which additionally point to the potential of microbiome-targeted therapies. To completely comprehend the interactions between gestational diabetes and the microbiome, standardizing methodologies and further research is necessary.
Collapse
Affiliation(s)
- Rita Almeida Teixeira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Cláudia Silva
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - António Carlos Ferreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Diana Martins
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Adelino Leite-Moreira
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - Isabel M Miranda
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| | - António S Barros
- Cardiovascular R&D Centre, UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Alameda Professor Hernani Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
9
|
Liu Y, Amit G, Zhao X, Wu N, Li D, Bashan A. Individualized network analysis reveals link between the gut microbiome, diet intervention and Gestational Diabetes Mellitus. PLoS Comput Biol 2023; 19:e1011193. [PMID: 37384793 DOI: 10.1371/journal.pcbi.1011193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/17/2023] [Indexed: 07/01/2023] Open
Abstract
Gestational Diabetes Mellitus (GDM), a serious complication during pregnancy which is defined by abnormal glucose regulation, is commonly treated by diabetic diet and lifestyle changes. While recent findings place the microbiome as a natural mediator between diet interventions and diverse disease states, its role in GDM is still unknown. Here, based on observation data from healthy pregnant control group and GDM patients, we developed a new network approach using patterns of co-abundance of microorganism to construct microbial networks that represent human-specific information about gut microbiota in different groups. By calculating network similarity in different groups, we analyze the gut microbiome from 27 GDM subjects collected before and after two weeks of diet therapy compared with 30 control subjects to identify the health condition of microbial community balance in GDM subjects. Although the microbial communities remain similar after the diet phase, we find that the structure of their inter-species co-abundance network is significantly altered, which is reflected in that the ecological balance of GDM patients was not "healthier" after the diet intervention. In addition, we devised a method for individualized network analysis of the microbiome, thereby a pattern is found that GDM individuals whose microbial networks are with large deviations from the GDM group are usually accompanied by their abnormal glucose regulation. This approach may help the development of individualized diagnosis strategies and microbiome-based therapies in the future.
Collapse
Affiliation(s)
- Yimeng Liu
- Department of Reliability and Systems Engineering, Beihang University, Beijing, China
| | - Guy Amit
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
- Department of Natural Sciences, The Open University of Israel, Raanana, Israel
| | - Xiaolei Zhao
- Gastroenterology Department, Peking University People's Hospital, Beijing, China
| | - Na Wu
- Department of Central Laboratory & Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Daqing Li
- Department of Reliability and Systems Engineering, Beihang University, Beijing, China
| | - Amir Bashan
- Department of Physics, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
10
|
Kunasegaran T, Balasubramaniam VRMT, Arasoo VJT, Palanisamy UD, Ramadas A. Diet Gut Microbiota Axis in Pregnancy: A Systematic Review of Recent Evidence. Curr Nutr Rep 2023; 12:203-214. [PMID: 36810808 PMCID: PMC9974723 DOI: 10.1007/s13668-023-00453-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 02/23/2023]
Abstract
PURPOSE OF REVIEW Although gut microbiota have been associated with the etiology of some diseases, the influence of foods on gut microbiota, especially among pregnant women, remains unclear. Hence, a systematic review was performed to investigate the association between diet and gut microbiota and their influence on metabolic health in pregnant women. RECENT FINDINGS We performed the systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 protocol to investigate the association between diet and gut microbiota and their influence on metabolic role in pregnant women. Five databases were searched for relevant peer-reviewed articles published in English since 2011. Two-staged screening of 659 retrieved records resulted in the inclusion of 10 studies. The collated findings suggested associations between nutrient intakes and four key microbes: Collinsella, Lachnospira, Sutterella, Faecalibacterium, and the Firmicutes/Bacteroidetes ratio in pregnant women. Dietary intakes in pregnancy were found to modify the gut microbiota and positively influence the cell metabolism in pregnant women. This review, however, emphasizes the importance of conducting well-designed prospective cohorts to investigate the role of changes in dietary intakes within the pregnancy and the influence of such changes on gut microbiota.
Collapse
Affiliation(s)
- Thubasni Kunasegaran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | | | | | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
11
|
Wang Z, Pu W, Liu Q, Zhu M, Chen Q, Xu Y, Zhou C. Association of Gut Microbiota Composition in Pregnant Women Colonized with Group B Streptococcus with Maternal Blood Routine and Neonatal Blood-Gas Analysis. Pathogens 2022; 11:1297. [PMID: 36365048 PMCID: PMC9697892 DOI: 10.3390/pathogens11111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Group B Streptococcus (GBS) colonizes the vaginal and rectal mucosa in a substantial proportion of healthy women, and GBS is a risk factor for GBS-associated adverse birth outcomes, such as bacterial infection, in neonates. Whether changes in the gut microbiota of GBS-infected pregnant women are associated with maternal complete blood cell count (CBC) and neonatal blood-gas analysis is unknown. To explore the relationship between the intestinal microecological composition of pregnant women and maternal blood routine and neonatal blood-gas analysis, we collected intestinal microecology samples of 26 pregnant women in clinic. They were divided into a positive group(GBS positive,GBS +) and a negative group (GBS negative, GBS-), with 12 in the positive group and 14 in the negative group. 16S rRNA gene sequencing was used to examine the gut microbiota profile from a fecal sample of pregnant women. CBC was carried out in enrolled pregnant women and umbilical arterial blood-gas analysis (UABGA)was conducted for analysis of intestinal microbiota composition, maternal blood routine and neonatal blood gas. Our results showed significant differences in the total number of organisms and microbial diversity of intestinal microbiota between healthy pregnant women and GBS-positive pregnant women. Particularly, abundances of Lentisphaerae, Chlorobi, Parcubacteria, Chloroflexi, Gemmatimonadetes, Acidobacteria, Fusobacteria and Fibrobacteres were only detected in participants with GBS colonization. Blood-gas analysis revealed that neonates born to mothers with GBS colonization had significantly higher fractions of carboxyhemoglobin (FCOHb) and lower methemoglobin (FMetHb), and abundances of OTU80, OTU122, OTU518 and OTU375 were associated with blood-gas indicators, such as carboxyhemoglobin, methemoglobin, PCO2, PH and ABE. Interestingly, there were significant correlations between OTU levels and inflammatory indexes in pregnant women with GBS infection. Together, this study revealed for the first time that altered gut microbiota compositions are related to the inflammatory state in GBS-positive pregnant women and neonatal blood-gas indicators. GBS colonization may lead to significant changes in the gut microbiome, which might be involved in the pathogenesis of the maternal inflammatory state and neonatal blood gas abnormalities.
Collapse
Affiliation(s)
- Zhixia Wang
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- Department of Gynecology and Obstetrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Wenyuan Pu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Qi Liu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Meifeng Zhu
- Department of Nephrology, Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, Changzhou 213000, China
| | - Qinlei Chen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
| | - Yingchun Xu
- Department of Pediatrics, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| | - Chunxiang Zhou
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210024, China
- Department of Chinese Medicine, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210019, China
| |
Collapse
|
12
|
Liso M, De Giuseppe R, Pontonio E. Editorial: The interplay between food and intestinal microbiota: How they impact on the well-being status of the host. Front Microbiol 2022; 13:980243. [PMID: 35923411 PMCID: PMC9343087 DOI: 10.3389/fmicb.2022.980243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marina Liso
- National Institute of Gastroenterology “S. de Bellis” Research Hospital (IRCCS), Bari, Italy
- *Correspondence: Marina Liso
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Erica Pontonio
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
13
|
Gut Microbes and Neuropathology: Is There a Causal Nexus? Pathogens 2022; 11:pathogens11070796. [PMID: 35890040 PMCID: PMC9319901 DOI: 10.3390/pathogens11070796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is a virtual organ which produces a myriad of molecules that the brain and other organs require. Humans and microbes are in a symbiotic relationship, we feed the microbes, and in turn, they provide us with essential molecules. Bacteroidetes and Firmicutes phyla account for around 80% of the total human gut microbiota, and approximately 1000 species of bacteria have been identified in the human gut. In adults, the main factors influencing microbiota structure are diet, exercise, stress, disease and medications. In this narrative review, we explore the involvement of the gut microbiota in Parkinson’s disease, Alzheimer’s disease, multiple sclerosis and autism, as these are such high-prevalence disorders. We focus on preclinical studies that increase the understanding of disease pathophysiology. We examine the potential for targeting the gut microbiota in the development of novel therapies and the limitations of the currently published clinical studies. We conclude that while the field shows enormous promise, further large-scale studies are required if a causal link between these disorders and gut microbes is to be definitively established.
Collapse
|
14
|
Xu T, Yan L, Sun B, Xu Q, Zhang J, Zhu W, Zhang Q, Chen N, Liu G, Chen F. Impacts of Delivery Mode and Maternal Factors on Neonatal Oral Microbiota. Front Microbiol 2022; 13:915423. [PMID: 35832807 PMCID: PMC9271910 DOI: 10.3389/fmicb.2022.915423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Objectives Initial oral microbial colonization has complicatedly interacted with growth and development. The aim of our study was to discover links between oral microbiota community structure and mode of delivery, maternal factors, such as systemic diseases, abortion history, and pregnancy complications. Methods A total of 177 pregnant women and their neonates were enrolled at Peking university people's hospital. We collected oral samples, medical history, and development phenotype and used a 16S rRNA gene sequence to analyze microbial diversity at all taxonomic levels, network structure, and metabolic characteristics. Results Firmicutes, Proteobacteria, and Actinobacteriota were the most predominant bacteria of neonatal oral samples among these phyla. Alpha-diversity of pregnant women with gestational diabetes mellitus (GDM), abortion history, and without immune diseases was higher than in control groups, and no significant dissimilarity in beta-diversity was observed between different maternal factors. Obvious separation or trend failed to be seen in different development phenotype groups. Besides, Oscillospirales were significantly more abundant in a natural delivery group than in the cesarean section group. Conclusion Our study indicated that maternal factors and mode of delivery influenced the oral microbial structure, but longitudinal studies were indispensable for capturing the long-term effects on neonatal development phenotype and oral microbiota.
Collapse
Affiliation(s)
- Tiansong Xu
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Lihuang Yan
- Department of Obstetrics, Peking University People’s Hospital, Beijing, China
| | - Bohui Sun
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Qi Xu
- Department of Obstetrics, Peking University People’s Hospital, Beijing, China
| | - Jieni Zhang
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Wenhui Zhu
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Qian Zhang
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People’s Hospital, Beijing, China
| | - Guoli Liu
- Department of Obstetrics, Peking University People’s Hospital, Beijing, China
| | - Feng Chen
- Central Laboratory, Peking University School of Stomatology, Beijing, China
| |
Collapse
|
15
|
Wu N, Mo H, Mu Q, Liu P, Liu G, Yu W. The Gut Mycobiome Characterization of Gestational Diabetes Mellitus and Its Association With Dietary Intervention. Front Microbiol 2022; 13:892859. [PMID: 35783435 PMCID: PMC9240440 DOI: 10.3389/fmicb.2022.892859] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a high-risk pregnancy complication that is associated with metabolic disorder phenotypes, such as abnormal blood glucose and obesity. The active interface between gut microbiota and diet contributes to metabolic homeostasis in GDM. However, the contributions of gut mycobiome have been neglected. Here, we profiled the gut fungi between GDM and healthy subjects at two time points and investigate whether variations in gut mycobiome correlate with key features of host metabolism and diet management in this observational study. We identified that Hanseniaspora, Torulaspora, Auricularia, Alternaria, and Candida contributed to GDM patient clustering, indicating that these fungal taxa are associated with abnormal blood glucose levels, and the causality needs to be further explored. While Penicillium, Ganoderma, Fusarium, Chaetomium, and Heterobasidion had significant explanatory effects on healthy subject clustering. In addition, spearman analysis further indicated that blood glucose levels were negatively correlated with polysaccharide-producing genera, Ganoderma, which could be reshaped by the short-term diet. The Penicillium which was negatively correlates with metabolic parameters, also exhibited the antimicrobial attribute by the fungal-bacterial interaction analysis. These data suggest that host metabolic homeostasis in GDM may be influenced by variability in the mycobiome and could be reshaped by the diet intervention. This work reveals the potential significance of the gut mycobiome in health and has implications for the beneficial effects of diet intervention on host metabolic homeostasis through regulating gut fungal abundance and metabolites.
Collapse
Affiliation(s)
- Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Heng Mo
- Department of Stomatology, Peking University People’s Hospital, Beijing, China
| | - Qing Mu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Department of Clinical Nutrition, Peking University People’s Hospital, Beijing, China
- *Correspondence: Peng Liu,
| | - Guoli Liu
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
- Guoli Liu,
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Weidong Yu,
| |
Collapse
|
16
|
Sugino KY, Mandala A, Janssen RC, Gurung S, Trammell M, Day MW, Brush RS, Papin JF, Dyer DW, Agbaga MP, Friedman JE, Castillo-Castrejon M, Jonscher KR, Myers DA. Western diet-induced shifts in the maternal microbiome are associated with altered microRNA expression in baboon placenta and fetal liver. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2022; 3:945768. [PMID: 36935840 PMCID: PMC10012127 DOI: 10.3389/fcdhc.2022.945768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Maternal consumption of a high-fat, Western-style diet (WD) disrupts the maternal/infant microbiome and contributes to developmental programming of the immune system and nonalcoholic fatty liver disease (NAFLD) in the offspring. Epigenetic changes, including non-coding miRNAs in the fetus and/or placenta may also underlie this risk. We previously showed that obese nonhuman primates fed a WD during pregnancy results in the loss of beneficial maternal gut microbes and dysregulation of cellular metabolism and mitochondrial dysfunction in the fetal liver, leading to a perturbed postnatal immune response with accelerated NAFLD in juvenile offspring. Here, we investigated associations between WD-induced maternal metabolic and microbiome changes, in the absence of obesity, and miRNA and gene expression changes in the placenta and fetal liver. After ~8-11 months of WD feeding, dams were similar in body weight but exhibited mild, systemic inflammation (elevated CRP and neutrophil count) and dyslipidemia (increased triglycerides and cholesterol) compared with dams fed a control diet. The maternal gut microbiome was mainly comprised of Lactobacillales and Clostridiales, with significantly decreased alpha diversity (P = 0.0163) in WD-fed dams but no community-wide differences (P = 0.26). At 0.9 gestation, mRNA expression of IL6 and TNF in maternal WD (mWD) exposed placentas trended higher, while increased triglycerides, expression of pro-inflammatory CCR2, and histological evidence for fibrosis were found in mWD-exposed fetal livers. In the mWD-exposed fetus, hepatic expression levels of miR-204-5p and miR-145-3p were significantly downregulated, whereas in mWD-exposed placentas, miR-182-5p and miR-183-5p were significantly decreased. Notably, miR-1285-3p expression in the liver and miR-183-5p in the placenta were significantly associated with inflammation and lipid synthesis pathway genes, respectively. Blautia and Ruminococcus were significantly associated with miR-122-5p in liver, while Coriobacteriaceae and Prevotellaceae were strongly associated with miR-1285-3p in the placenta; both miRNAs are implicated in pathways mediating postnatal growth and obesity. Our findings demonstrate that mWD shifts the maternal microbiome, lipid metabolism, and inflammation prior to obesity and are associated with epigenetic changes in the placenta and fetal liver. These changes may underlie inflammation, oxidative stress, and fibrosis patterns that drive NAFLD and metabolic disease risk in the next generation.
Collapse
Affiliation(s)
- Kameron Y. Sugino
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ashok Mandala
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rachel C. Janssen
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - MaJoi Trammell
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Michael W. Day
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Richard S. Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - James F. Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Martin-Paul Agbaga
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jacob E. Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Karen R. Jonscher
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- CORRESPONDENCE: Karen R. Jonscher,
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|