1
|
Wang Q, Fu H, Zhang Y, Zhang M, Xu J, Fu J. Bibliometric and Visualization Analysis of DprE1 Inhibitors to Combat Tuberculosis. Drug Des Devel Ther 2025; 19:2577-2596. [PMID: 40196755 PMCID: PMC11974558 DOI: 10.2147/dddt.s515049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025] Open
Abstract
Background Tuberculosis (TB) poses a serious threat to public health, particularly owing to the increase in multidrug-resistant tuberculosis (MDR-TB) and extremely drug-resistant tuberculosis (XDR-TB); thus, there is an imperative need for novel treatments to tackle this issue. Decaprenylphosphoryl-β-D-ribose 2'-epimerase (DprE1) is essential for mycobacterial cell wall integrity and viability. As no relevant bibliometric study has been reported, we performed bibliometric and visual analyses to depict the knowledge framework of research related to the involvement of DprE1 in TB. Methods Relevant studies were sourced from the Web of Science Core Collection database. VOSviewer, CiteSpace, and bibliometrics (http://bibliometric.com/) were used to construct networks based on an analysis of journals, countries, funding, institutions, authors, references, and keywords. Results A total of 184 publications were retrieved; the total citations were 3405 times and the mean citation was 17.28 per article. The annual number of publications on DprE1 in TB has shown a significantly increasing trend. The European Journal of Medicinal Chemistry is the most published journal, with 19 articles. Lu Yu and Bin Wang contributed the most prolific authors with 18 articles. Stratified by the number of publications, India was the most prolific country that cooperated closely with the USA, UK, Japan, and United Arab Emirates. Burstness analysis of references and keywords showed that the developing research trends in this field mainly woven around "Mtb", "DprE1" and "inhibitors" during the past years. Conclusion A systematic bibliometric study indicates that DprE1 remains a focal point in the anti-TB domain. These results can serve as a data-driven reference for future research and offer precise insights into the development of anti-TB agents associated with DprE1. To the best of our knowledge, this study is the first to comprehensively investigate DprE1 in TB by means of bibliometric analysis.
Collapse
Affiliation(s)
- Qingqing Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, People’s Republic of China
| | - Huixiao Fu
- Department of Science and Education, The First People’s Hospital of Guiyang, Guiyang, People’s Republic of China
| | - Yining Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China
| | - Man Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, People’s Republic of China
| | - Jian Xu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, People’s Republic of China
| | - Jian Fu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, People’s Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, People’s Republic of China
| |
Collapse
|
2
|
Kaushik A, Peshrana A, Barapatre R, Pansheriya S, Kaushal RS. Unveiling the properties of ascorbic acid against M. tb through in silico approach: A comparative drug-based study. J Mol Model 2025; 31:94. [PMID: 39992434 DOI: 10.1007/s00894-025-06322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
CONTEXT Tuberculosis (TB) is a highly contagious and potentially life-threatening disease caused by Mycobacterium tuberculosis (M. tb). According to the World Health Organization (WHO), 7.5 million people were diagnosed with TB in 2022. Combating this disease requires ongoing efforts in TB drug discovery and the development of new treatment regimens. Identifying novel drug targets and inhibitory molecules is crucial in the fight against latent TB, particularly due to the rising issue of M. tb drug resistance. In modern drug discovery, the focus has shifted towards identifying new, safe natural compounds with enhanced biological activity against TB. One promising compound is ascorbic acid (Vitamin C), which possesses pro-oxidant properties that generate free radicals along with the first and second-line anti-TB drugs, aiding in the eradication of M. tb during latent infections. METHODS In the current research, extensive in silico studies have been conducted to investigate the potential of ascorbic acid as an inhibitor of various M. tb pathways, especially those involving protein folding (chaperone-mediated) and detoxification pathways. The proteins were analysed by various physicochemical and pharmacological parameters. Molecular docking of the selected proteins with existing first-line, second-line drugs and ascorbic acid was performed. Furthermore, the top-scoring molecular docking of ascorbic acid was subjected to Molecular Dynamics Simulation. The 500 ns Molecular Dynamics Simulation studies were carried out by GROMACS v2024.1 using CHARMM27 force field, TIP3P water model and using triclinic box for solvation. The obtained trajectories were analysed through XMGRACE tool.
Collapse
Affiliation(s)
- Aviral Kaushik
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics & Structural Biology Laboratory, Research & Development, Cell, Parul University, Vadodara, Gujarat, India
| | - Arti Peshrana
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics & Structural Biology Laboratory, Research & Development, Cell, Parul University, Vadodara, Gujarat, India
| | - Rohit Barapatre
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics & Structural Biology Laboratory, Research & Development, Cell, Parul University, Vadodara, Gujarat, India
| | - Shreya Pansheriya
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics & Structural Biology Laboratory, Research & Development, Cell, Parul University, Vadodara, Gujarat, India
| | - Radhey Shyam Kaushal
- Department of Life Sciences, Parul Institute of Applied Sciences and Biophysics & Structural Biology Laboratory, Research & Development, Cell, Parul University, Vadodara, Gujarat, India.
- Department of Life Sciences, Parul Institute of Applied Sciences and Research & Development, Cell, Parul University, Vadodara, Gujarat, India.
| |
Collapse
|
3
|
Jain M, Vyas R. Unveiling the silent defenders: mycobacterial stress sensors at the forefront to combat tuberculosis. Crit Rev Biotechnol 2025:1-19. [PMID: 39880585 DOI: 10.1080/07388551.2024.2449367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/12/2024] [Accepted: 09/14/2024] [Indexed: 01/31/2025]
Abstract
The global escalation in tuberculosis (TB) cases accompanied by the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (M.tb) emphasizes the critical requirement for novel potent drugs. The M.tb demonstrates extraordinary adaptability, thriving in diverse conditions, and always finds itself in win-win situations regardless of whether the environment is favorable or unfavorable; no matter the magnitude of the challenge, it can endure and survive. This review aims to uncover the role of multiple stress sensors of M.tb that assist bacteria in remaining viable within the host for years against various physiological stresses offered by the host. M.tb is an exceptionally triumphant pathogen, primarily due to its adeptness in developing defense mechanisms against stressful situations. The recent advances emphasize the significance of M.tb stress sensors, including chaperones, proteases, transcription factors, riboswitches, inteins, etc., employed in responding to a spectrum of physiological stresses imposed by the host, encompassing surface stress, host immune responses, osmotic stress, oxidative and nitrosative stresses, cell envelope stress, environmental stress, reductive stress, and drug pressure. These sensors act as silent defenders orchestrating adaptive strategies, with limited comprehensive information in current literature, necessitating a focused review. The M.tb strategies utilizing these stress sensors to mitigate the impact of traumatic conditions demand attention to neutralize this pathogen effectively. Moreover, the intricacies of these stress sensors provide potential targets to design an effective TB drug using structure-based drug design against this formidable global health threat.
Collapse
Affiliation(s)
- Manya Jain
- Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India
| | - Rajan Vyas
- Department of Life Sciences, Shiv Nadar Institution of Eminence (Deemed to be University), Gautam Buddha Nagar, Uttar Pradesh, India
| |
Collapse
|
4
|
Sarangi A, Das BS, Pahuja I, Ojha S, Singh V, Giri S, Bhaskar A, Bhattacharya D. Ajoene: a natural compound with enhanced antimycobacterial and antibiofilm properties mediated by efflux pump modulation and ROS generation against M. Smegmatis. Arch Microbiol 2024; 206:453. [PMID: 39487375 DOI: 10.1007/s00203-024-04189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Tuberculosis (TB) continues to be a primary worldwide health concern due to relatively ineffective treatments. The prolonged duration of conventional antibiotic therapy warrants innovative approaches to shorten treatment courses. In response to challenges, the study explores potential of Ajoene, a naturally occurring garlic extract-derived compound, for potential TB treatment. Mycobacterium smegmatis as a model organism for M. tuberculosis (M. tb) to investigate Ajoene's efficiency. In vitro techniques like antimicrobial susceptibility, antibiofilm, EtBr accumulation assay, and ROS assay evaluate the potency of Ajoene and conventional TB drugs against Mycobacterium smegmatis. An in-silico study also investigated the interaction between Ajoene and quorum-sensing proteins, specifically regX3, MSMEG_5244, and MSMEG_3944, which are involved in biofilm formation and sliding activity. In vitro findings revealed that Ajoene exhibited significant antibacterial activity by inhibiting growth and showing bactericidal effects. It also demonstrated additive interactions with common antibiotics such as Isoniazid and Rifampicin. Furthermore, Ajoene demonstrated a comparative interaction with commonly used antibiotics, such as Isoniazid and Rifampicin, and reduced M. smegmatis motility, both alone and in combination with these antibiotics. In silico analysis shows that Ajoene exhibited a higher binding affinity with regX3, a protein orthologous to the regX3 gene in M.tb. Ajoene also demonstrated consistent antibiofilm effects, particularly when combined synergistically with Isoniazid and Rifampicin. Mechanistic investigations demonstrated Ajoene's potential to inhibit efflux pumps and promote ROS generation in bacteria, suggesting a potential direct killing mechanism. Collectively, the findings emphasize Ajoene's effectiveness as a novel antimycobacterial and antibiofilm molecule for TB treatment.
Collapse
Affiliation(s)
- Ashirbad Sarangi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Bhabani Shankar Das
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Suvendu Ojha
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Vishal Singh
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | - Sidhartha Giri
- ICMR-Regional Medical Research Centre (RMRC), Bhubaneswar, Odisha, India
| | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Debapriya Bhattacharya
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India.
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, 462030, India.
| |
Collapse
|
5
|
Peng F, Ke Z, Jin H, Wang W, Zhang H, Li Y. Structural insights into the regulation mechanism of Mycobacterium tuberculosis MftR. FASEB J 2024; 38:e23724. [PMID: 38837712 DOI: 10.1096/fj.202302409rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Mycobacterium tuberculosis, the pathogen of the deadly disease tuberculosis, depends on the redox cofactor mycofactocin (MFT) to adapt to and survive under hypoxic conditions. MftR is a TetR family transcription regulator that binds upstream of the MFT gene cluster and controls MFT synthesis. To elucidate the structural basis underlying MftR regulation, we determined the crystal structure of Mycobacterium tuberculosis MftR (TB-MftR). The structure revealed an interconnected hydrogen bond network in the α1-α2-α3 helices of helix-turn-helix (HTH) DNA-binding domain that is essential for nucleic acid interactions. The ligand-binding domain contains a hydrophobic cavity enclosing long-chain fatty acyl-CoAs like the key regulatory ligand oleoyl-CoA. Despite variations in ligand-binding modes, comparative analyses suggest regulatory mechanisms are largely conserved across TetR family acyl-CoA sensors. By elucidating the intricate structural mechanisms governing DNA and ligand binding by TB-MftR, our study enhances understanding of the regulatory roles of this transcription factor under hypoxic conditions, providing insights that could inform future research into Mycobacterium tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Fei Peng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Zunhui Ke
- Department of Blood Transfusion, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoruo Jin
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Medical Subcenter of HUST Analytical & Testing Center, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China
| |
Collapse
|
6
|
da Silva CV, Velikkakam T, de Oliveira ECM, Silveira ACA, de Lima Júnior JP, Uombe NPI, da Silva PHR, Borges BC. Cellular dormancy: A widespread phenomenon that perpetuates infectious diseases. J Basic Microbiol 2024; 64:e2300389. [PMID: 38064123 DOI: 10.1002/jobm.202300389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/05/2023] [Accepted: 11/21/2023] [Indexed: 05/03/2024]
Abstract
Under adverse environmental conditions, microorganisms are able to enter a state of cellular dormancy which consists of cell cycle arrest and interruption of multiplication. This process ensures their perpetuation in the infected host organism and enables the spread of disease. Throughout biological evolution, dormancy allowed microorganisms to persist in a harsh niche until favorable conditions for their reactivation were re-established. Here, we propose to discuss the dormancy of bacteria and protozoa pathogens focusing on the potential mechanisms and components associated with dormancy.
Collapse
Affiliation(s)
- Claudio V da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Teresiama Velikkakam
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Elida C M de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Anna C A Silveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Joed P de Lima Júnior
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Nelsa P I Uombe
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Paulo H R da Silva
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Bruna C Borges
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
7
|
Negi A, Sharma R. The significance of persisters in tuberculosis drug discovery: Exploring the potential of targeting the glyoxylate shunt pathway. Eur J Med Chem 2024; 265:116058. [PMID: 38128237 DOI: 10.1016/j.ejmech.2023.116058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The significant challenge in confronting TB eradication is the discursive treatment that results in the disease reactivation, patient non compliance and drug resistance. The presently available drug regimen for TB largely targets the active bacilli and thus remains inadequate against the dormant or persistent subpopulation of Mtb that results in latent TB affecting a quarter of the global population. The crucial pathways that are particularly essential for the survival of dormant Mtb demand better apprehension. Novel drugs are needed to specifically address these persisters in order to enhance treatment effectiveness. Among such pathways, the glyoxylate bypass plays a critical role in the persistence and latent infection of Mtb, making it a promising target for drug development in recent years. In this review, we have compiled the attributes of bacterial subpopulations liable for latent TB and the pathways indispensable for their survival. Specifically, we delve into the glyoxylate shunt pathway and its key enzymes as potential drug targets.
Collapse
Affiliation(s)
- Anjali Negi
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Ghoshal A, Verma A, Bhaskar A, Dwivedi VP. The uncharted territory of host-pathogen interaction in tuberculosis. Front Immunol 2024; 15:1339467. [PMID: 38312835 PMCID: PMC10834760 DOI: 10.3389/fimmu.2024.1339467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb) effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). M.tb has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. M.tb antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses. This is followed by the induction of cellular stress responses in the host. Such cells can either undergo various cell death processes such as apoptosis or necrosis, or mount effective immune responses to clear the invading pathogen. Further, to combat the infection progression, the host secretes extracellular vesicles such as exosomes to initiate immune signaling. The exosomes can contain M.tb as well as host cell-derived peptides that can act as a double-edged sword in the immune signaling event. The host-symbiont microbiota produces various metabolites that are beneficial for maintaining healthy tissue microenvironment. In juxtaposition to the above-mentioned mechanisms, M.tb dysregulates the gut and respiratory microbiome to support its replication and dissemination process. The above-mentioned interconnected host cellular processes of Immunometabolism, Cellular stress, Host Microbiome, and Extracellular vesicles are less explored in the realm of exploration of novel Host-directed therapies for TB. Therefore, this review highlights the intertwined host cellular processes to control M.tb survival and showcases the important factors that can be targeted for designing efficacious therapy.
Collapse
Affiliation(s)
| | | | | | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
9
|
Rubinstein M, Makhon A, Losev Y, Valenci GZ, Gatt YE, Margalit H, Fass E, Kutikov I, Murik O, Zeevi DA, Savyon M, Tau L, Kaidar Shwartz H, Dveyrin Z, Rorman E, Nissan I. Prolonged survival of a patient with active MDR-TB HIV co-morbidity: insights from a Mycobacterium tuberculosis strain with a unique genomic deletion. Front Med (Lausanne) 2023; 10:1292665. [PMID: 38020140 PMCID: PMC10657812 DOI: 10.3389/fmed.2023.1292665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Coinfection of HIV and multidrug-resistant tuberculosis (MDR-TB) presents significant challenges in terms of the treatment and prognosis of tuberculosis, leading to complexities in managing the disease and impacting the overall outcome for TB patients. This study presents a remarkable case of a patient with MDR-TB and HIV coinfection who survived for over 8 years, despite poor treatment adherence and comorbidities. Whole genome sequencing (WGS) of the infecting Mycobacterium tuberculosis (Mtb) strain revealed a unique genomic deletion, spanning 18 genes, including key genes involved in hypoxia response, intracellular survival, immunodominant antigens, and dormancy. This deletion, that we have called "Del-X," potentially exerts a profound influence on the bacterial physiology and its virulence. Only few similar deletions were detected in other non-related Mtb genomes worldwide. In vivo evolution analysis identified drug resistance and metabolic adaptation mutations and their temporal dynamics during the patient's treatment course.
Collapse
Affiliation(s)
- Mor Rubinstein
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Andrei Makhon
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Yelena Losev
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Gal Zizelski Valenci
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Yair E. Gatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ephraim Fass
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Ina Kutikov
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Omer Murik
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - David A. Zeevi
- Translational Genomics Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Michal Savyon
- Tel Aviv District Health Office, Ministry of Health, Tel Aviv, Israel
| | - Luba Tau
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hasia Kaidar Shwartz
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Zeev Dveyrin
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Efrat Rorman
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| | - Israel Nissan
- National Public Health Laboratory, Public Health Directorate, Ministry of Health, Tel Aviv, Israel
| |
Collapse
|
10
|
Mulyukin AL, Recchia D, Kostrikina NA, Artyukhina MV, Martini BA, Stamilla A, Degiacomi G, Salina EG. Distinct Effects of Moxifloxacin and Bedaquiline on Growing and 'Non-Culturable' Mycobacterium abscessus. Microorganisms 2023; 11:2690. [PMID: 38004702 PMCID: PMC10673116 DOI: 10.3390/microorganisms11112690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Mycobacterium abscessus has recently emerged as the cause of an increasing number of human infections worldwide. Unfortunately, it is highly resistant to existing drugs, and new specific agents to combat M. abscessus have not yet been found. The discovery of antibiotics that are effective not only against replicating but also against dormant and often recalcitrant cells is a daunting challenge. In this study, we developed a model of non-replicating M. abscessus, which represents a valuable screening tool for antibacterial agents. Thus, we demonstrated that, under a deficiency of potassium ions in the growth media and prolonged incubation, M. abscessus entered a 'non-culturable' state with a significant loss of colony-forming ability, but it retained viability, as confirmed using the most-probable-number (MPN) assay. The 'non-culturable' mycobacteria possessed decelerated cellular metabolism and noticeable differences in cell morphology from actively growing mycobacteria. 'Non-culturable' cells were used in a comprehensive screening of the efficacy of antibiotics, along with actively growing cells. Both CFU and MPN tests confirmed the prominent bactericidal effect of moxifloxacin on actively growing and 'non-culturable' M. abscessus, as proven by less than 0.01% of cells surviving after antibiotic treatment and prolonged storage. Bedaquiline exhibited a comparable bactericidal effect only on metabolically inactive non-culturable cells aged for 44 days. There were reductions ranging from 1000 to 10,000-fold in CFU and MPN, but it was not so efficient with respect to active cells, resulting in a bacteriostatic effect. The demonstrated specificity of bedaquiline in relation to inert non-replicating M. abscessus offers a new and unexpected result. Based on the findings of this research, moxifloxacin and bedaquiline can be regarded as potential treatments for infections caused by M. abscessus. In addition, a key outcome is the proposal to include the combination of viability assays for comprehensive testing of drug candidates. Relying on CFU-based assays alone resulted in overestimates of antibacterial efficacy, as demonstrated in our experiments.
Collapse
Affiliation(s)
- Andrey L. Mulyukin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia (N.A.K.)
| | - Deborah Recchia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy (A.S.)
| | - Nadezhda A. Kostrikina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia (N.A.K.)
| | - Maria V. Artyukhina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (M.V.A.)
| | - Billy A. Martini
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (M.V.A.)
| | - Alessandro Stamilla
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy (A.S.)
| | - Giulia Degiacomi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy (A.S.)
| | - Elena G. Salina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (M.V.A.)
| |
Collapse
|
11
|
Jiang F, Han Y, Liu Y, Xue Y, Cheng P, Xiao L, Gong W. A comprehensive approach to developing a multi-epitope vaccine against Mycobacterium tuberculosis: from in silico design to in vitro immunization evaluation. Front Immunol 2023; 14:1280299. [PMID: 38022558 PMCID: PMC10652892 DOI: 10.3389/fimmu.2023.1280299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The Bacillus Calmette-Guérin (BCG) vaccine, currently used against tuberculosis (TB), exhibits inconsistent efficacy, highlighting the need for more potent TB vaccines. Materials and methods In this study, we employed reverse vaccinology techniques to develop a promising multi-epitope vaccine (MEV) candidate, called PP13138R, for TB prevention. PP13138R comprises 34 epitopes, including B-cell, cytotoxic T lymphocyte, and helper T lymphocyte epitopes. Using bioinformatics and immunoinformatics tools, we assessed the physicochemical properties, structural features, and immunological characteristics of PP13138R. Results The vaccine candidate demonstrated excellent antigenicity, immunogenicity, and solubility without any signs of toxicity or sensitization. In silico analyses revealed that PP13138R interacts strongly with Toll-like receptor 2 and 4, stimulating innate and adaptive immune cells to produce abundant antigen-specific antibodies and cytokines. In vitro experiments further supported the efficacy of PP13138R by significantly increasing the population of IFN-γ+ T lymphocytes and the production of IFN-γ, TNF-α, IL-6, and IL-10 cytokines in active tuberculosis patients, latent tuberculosis infection individuals, and healthy controls, revealing the immunological characteristics and compare the immune responses elicited by the PP13138R vaccine across different stages of Mycobacterium tuberculosis infection. Conclusion These findings highlight the potential of PP13138R as a promising MEV candidate, characterized by favorable antigenicity, immunogenicity, and solubility, without any toxicity or sensitization.
Collapse
Affiliation(s)
- Fan Jiang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
- Section of Health, No. 94804 Unit of the Chinese People’s Liberation Army, Shanghai, China
- Resident standardization training cadet corps, Air Force Hospital of Eastern Theater, Nanjing, China
| | - Yong Han
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yinping Liu
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Peng Cheng
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Li Xiao
- Respiratory Research Institute, Senior Department of Pulmonary & Critical Care Medicine, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
de Castro RJA, Marina CL, Sturny-Leclère A, Hoffmann C, Bürgel PH, Wong SSW, Aimanianda V, Varet H, Agrawal R, Bocca AL, Alanio A. Kicking sleepers out of bed: Macrophages promote reactivation of dormant Cryptococcus neoformans by extracellular vesicle release and non-lytic exocytosis. PLoS Pathog 2023; 19:e1011841. [PMID: 38033163 PMCID: PMC10715671 DOI: 10.1371/journal.ppat.1011841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/12/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Macrophages play a key role in disseminated cryptococcosis, a deadly fungal disease caused by Cryptococcus neoformans. This opportunistic infection can arise following the reactivation of a poorly characterized latent infection attributed to dormant C. neoformans. Here, we investigated the mechanisms underlying reactivation of dormant C. neoformans using an in vitro co-culture model of viable but non-culturable (VBNC; equivalent of dormant) yeast cells with bone marrow-derived murine macrophages (BMDMs). Comparative transcriptome analysis of BMDMs incubated with log, stationary phase or VBNC cells of C. neoformans showed that VBNC cells elicited a reduced transcriptional modification of the macrophage but retaining the ability to regulate genes important for immune response, such as NLRP3 inflammasome-related genes. We further confirmed the maintenance of the low immunostimulatory capacity of VBNC cells using multiplex cytokine profiling, and analysis of cell wall composition and dectin-1 ligands exposure. In addition, we evaluated the effects of classic (M1) or alternative (M2) macrophage polarization on VBNC cells. We observed that intracellular residence sustained dormancy, regardless of the polarization state of macrophages and despite indirect detection of pantothenic acid (or its derivatives), a known reactivator for VBNC cells, in the C. neoformans-containing phagolysosome. Notably, M0 and M2, but not M1 macrophages, induced extracellular reactivation of VBNC cells by the secretion of extracellular vesicles and non-lytic exocytosis. Our results indicate that VBNC cells retain the low immunostimulatory profile required for persistence of C. neoformans in the host. We also describe a pro-pathogen role of macrophage-derived extracellular vesicles in C. neoformans infection and reinforce the impact of non-lytic exocytosis and the macrophage profile on the pathophysiology of cryptococcosis.
Collapse
Affiliation(s)
- Raffael Júnio Araújo de Castro
- Translational Mycology Research Group, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Clara Luna Marina
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Aude Sturny-Leclère
- Translational Mycology Research Group, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Christian Hoffmann
- Food Research Center, Department of Food Sciences and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Pedro Henrique Bürgel
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Sarah Sze Wah Wong
- Immunobiology of Aspergillus, Institut Pasteur, Université Paris Cité, Paris, France
| | - Vishukumar Aimanianda
- Immunobiology of Aspergillus, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hugo Varet
- Plate-forme Technologique Biomics, Institut Pasteur, Université Paris Cité, Paris, France
| | - Ruchi Agrawal
- Translational Mycology Research Group, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Distrito Federal, Brazil
| | - Alexandre Alanio
- Translational Mycology Research Group, National Reference Center for Invasive Mycoses and Antifungals, Mycology Department, Institut Pasteur, Université Paris Cité, Paris, France
- Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
13
|
Devi A, Pahuja I, Singh SP, Verma A, Bhattacharya D, Bhaskar A, Dwivedi VP, Das G. Revisiting the role of mesenchymal stem cells in tuberculosis and other infectious diseases. Cell Mol Immunol 2023; 20:600-612. [PMID: 37173422 PMCID: PMC10176304 DOI: 10.1038/s41423-023-01028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 05/15/2023] Open
Abstract
Mesenchymal stem cells (MSCs) play diverse roles ranging from regeneration and wound healing to immune signaling. Recent investigations have indicated the crucial role of these multipotent stem cells in regulating various aspects of the immune system. MSCs express unique signaling molecules and secrete various soluble factors that play critical roles in modulating and shaping immune responses, and in some other cases, MSCs can also exert direct antimicrobial effects, thereby helping with the eradication of invading organisms. Recently, it has been demonstrated that MSCs are recruited at the periphery of the granuloma containing Mycobacterium tuberculosis and exert "Janus"-like functions by harboring pathogens and mediating host protective immune responses. This leads to the establishment of a dynamic balance between the host and the pathogen. MSCs function through various immunomodulatory factors such as nitric oxide (NO), IDO, and immunosuppressive cytokines. Recently, our group has shown that M.tb uses MSCs as a niche to evade host protective immune surveillance mechanisms and establish dormancy. MSCs also express a large number of ABC efflux pumps; therefore, dormant M.tb residing in MSCs are exposed to a suboptimal dose of drugs. Therefore, it is highly likely that drug resistance is coupled with dormancy and originates within MSCs. In this review, we discussed various immunomodulatory properties of MSCs, their interactions with important immune cells, and soluble factors. We also discussed the possible roles of MSCs in the outcome of multiple infections and in shaping the immune system, which may provide insight into therapeutic approaches using these cells in different infection models.
Collapse
Affiliation(s)
- Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Isha Pahuja
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Molecular Medicine, Jamia Hamdard University, New Delhi, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Akanksha Verma
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Ashima Bhaskar
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ved Prakash Dwivedi
- Immunobiology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Gobardhan Das
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
14
|
Krol E, Werel L, Essen LO, Becker A. Structural and functional diversity of bacterial cyclic nucleotide perception by CRP proteins. MICROLIFE 2023; 4:uqad024. [PMID: 37223727 PMCID: PMC10187061 DOI: 10.1093/femsml/uqad024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger synthesized by most living organisms. In bacteria, it plays highly diverse roles in metabolism, host colonization, motility, and many other processes important for optimal fitness. The main route of cAMP perception is through transcription factors from the diverse and versatile CRP-FNR protein superfamily. Since the discovery of the very first CRP protein CAP in Escherichia coli more than four decades ago, its homologs have been characterized in both closely related and distant bacterial species. The cAMP-mediated gene activation for carbon catabolism by a CRP protein in the absence of glucose seems to be restricted to E. coli and its close relatives. In other phyla, the regulatory targets are more diverse. In addition to cAMP, cGMP has recently been identified as a ligand of certain CRP proteins. In a CRP dimer, each of the two cyclic nucleotide molecules makes contacts with both protein subunits and effectuates a conformational change that favors DNA binding. Here, we summarize the current knowledge on structural and physiological aspects of E. coli CAP compared with other cAMP- and cGMP-activated transcription factors, and point to emerging trends in metabolic regulation related to lysine modification and membrane association of CRP proteins.
Collapse
Affiliation(s)
- Elizaveta Krol
- Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Laura Werel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Lars Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Anke Becker
- Corresponding author. Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg. E-mail:
| |
Collapse
|