1
|
Zhang Y, Zhan C, Mei L, Li X, Liu W, Sheng M, Wang Y, Zhao Q, Zhang L, Shao M, Shao W. Silencing of lncRNA Gm26917 Attenuates Alveolar Macrophage-mediated Inflammatory Response in LPS-induced Acute Lung Injury Via Inhibiting NKRF Ubiquitination. Inflammation 2025:10.1007/s10753-025-02240-5. [PMID: 39825194 DOI: 10.1007/s10753-025-02240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
The inflammatory response mediated by alveolar macrophages plays a crucial role in the development of acute lung injury. Numerous studies have reported that lncRNAs are highly expressed in acute lung injury in mouse models and cell lines, and acute lung injury (ALI) can be effectively alleviated by targeting these lncRNAs. The aim of this study was to explore the mechanism by LncRNA Gm26917 regulates the inflammatory response in alveolar macrophages during acute lung injury mouse model. We initially observed a significant upregulation of Gm26917 expression in both ALI conditions and in MH-S cells treated with LPS. Furthermore, the silencing of Gm26917 via lentivirus-mediated methods conferred protection against LPS-induced ALI. Additionally, siRNA-mediated knockdown of Gm26917 attenuated LPS-induced inflammatory responses and modulated the function of alveolar macrophages. Subsequent mechanistic studies revealed that Gm26917 interacts with NKRF, and its knockdown suppressed NKRF ubiquitination, thereby enhancing NKRF binding to p50 and subsequently inhibiting the NF-κB signaling pathway. In conclusion, our findings demonstrate that silencing Gm26917 can mitigate LPS-induced ALI by modulating the NF-κB signaling pathway in alveolar macrophages through interactions with NKRF.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chunai Zhan
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Long Mei
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xinyu Li
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Weiyi Liu
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengfei Sheng
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yaoyun Wang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Qing Zhao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Lizhi Zhang
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Min Shao
- Department of Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Shao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Carr SM, Elkins KM. Development of Polymerase Chain Reaction-High-Resolution Melt Assay for Waterborne Pathogens Legionella pneumophila, Vibrio parahaemolyticus, and Camplobacter jejuni. Microorganisms 2024; 12:1366. [PMID: 39065134 PMCID: PMC11278865 DOI: 10.3390/microorganisms12071366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Legionella pneumophila is the waterborne pathogen primarily responsible for causing both Pontiac Fever and Legionnaire's Disease in humans. L. pneumophila is transmitted via aerosolized water droplets. The purpose of this study was to design and test primers to allow for rapid polymerase chain reaction (PCR) melt detection and identification of this infectious agent in cases of clinical or emergency response detection. New PCR primers were designed for this species of bacteria; the primer set was purchased from IDT and the target bacterial DNA was purchased from ATCC. The L. pneumophila primers targeted the macrophage infectivity potentiator gene (mip), which inhibits macrophage phagocytosis. The primers were tested for specificity, repeatability, and sensitivity using PCR-high-resolution melt (HRM) assays. The primer set was found to be specific to the designated bacteria and did not amplify the other twenty-one species from the panel. The L. pneumophila assay was able to be multiplexed. The duplex assay consists of primers for L. pneumophila and Vibrio parahaemolyticus, which are both waterborne pathogens. The triplex assay consists of primers for L. pneumophila, V. parahaemolyticus, and Campylobacter jejuni. The unique melting temperature for the L. pneumophila primer assay is 82.84 ± 0.19 °C, the C. jejuni assay is 78.10 ± 0.58 °C, and the V. parahaemolyticus assay is 86.74 ± 0.65 °C.
Collapse
Affiliation(s)
| | - Kelly M. Elkins
- Forensic Science Program, Chemistry Department, Towson University, 8000 York Road, Towson, MD 21252-0001, USA
| |
Collapse
|
3
|
Fu W, Cao Y, Liu J, Huang C, Shu K, Zhu N. Xinfeng Capsule Inhibits Pyroptosis and Ameliorates Myocardial Injury in Rats with Adjuvant Arthritis via the GAS5/miR-21/TLR4 Axis. Drug Des Devel Ther 2024; 18:2421-2433. [PMID: 38915862 PMCID: PMC11195676 DOI: 10.2147/dddt.s456783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose This study probed the mechanism of action of Xinfeng Capsule (XFC) in myocardial injury in rats with adjuvant arthritis (AA) via the growth arrest-specific transcript 5 (GAS5)/microRNA-21 (miR-21)/Toll-like receptor 4 (TLR4) axis. Methods Rats were injected with Freund's complete adjuvant to establish a rat model of AA. Then, some modeled rats were given normal saline or drugs only, and some modeled rats were injected with adeno-associated viruses or necrosulfonamide (NSA; a pyroptosis inhibitor) before drug administration. Toe swelling and arthritis index (AI) were calculated. Pathological and morphological changes in synovial and myocardial tissues were analyzed with hematoxylin-eosin staining, and pyroptotic vesicles and the ultrastructural changes of myocardial tissues were observed with transmission electron microscopy. The serum levels of interleukin (IL)-1β, IL-18, IL-6, and tumor necrosis factor (TNF)-α were detected, and lactate dehydrogenase (LDH) release was measured in myocardial tissues, accompanied by the examination of GAS5, miR-21, TLR4, nuclear factor-kB (NF-κB) p65, nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), Caspase-1, and Gasdermin D (GSDMD) expression in myocardial tissues. Results After AA modeling, rats presented with significantly increased toe swelling and AI scores, synovial and myocardial tissue damage, elevated pyroptotic vesicles, and markedly enhanced serum levels of IL-1β, IL-18, IL-6, and TNF-α, accompanied by significantly diminished GAS5 expression, substantially augmented miR-21, TLR4, NF-κB p65, NLRP3, Caspase-1, and GSDMD expression, greatly increased LDH release in myocardial tissues. XFC treatment significantly declined toe swelling, AI scores, synovial and myocardial tissue damage, and the serum levels of IL-1β, IL-18, IL-6, and TNF-α in AA rats. Additionally, XFC treatment markedly elevated GAS5 expression and substantially lowered LDH release and miR-21, TLR4, NF-κB p65, NLRP3, Caspase-1, and GSDMD expression in myocardial tissues of AA rats. Moreover, the above effects of XFC in AA rats were further promoted by GAS5 overexpression or NSA treatment. Conclusion XFC alleviated myocardial injury in AA rats by regulating the GAS5/miR-21/TLR4 axis and inhibiting pyroptosis and pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Wanlan Fu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People’s Republic of China
| | - Yunxiang Cao
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People’s Republic of China
| | - Jian Liu
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People’s Republic of China
| | - Chuanbing Huang
- Department of Rheumatology, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, 230031, People’s Republic of China
| | - Kaiyan Shu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People’s Republic of China
| | - Nanfei Zhu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, People’s Republic of China
| |
Collapse
|
4
|
Penunuri G, Wang P, Corbett-Detig R, Russell SL. A Structural Proteome Screen Identifies Protein Mimicry in Host-Microbe Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588793. [PMID: 38645127 PMCID: PMC11030372 DOI: 10.1101/2024.04.10.588793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Host-microbe systems are evolutionary niches that produce coevolved biological interactions and are a key component of global health. However, these systems have historically been a difficult field of biological research due to their experimental intractability. Impactful advances in global health will be obtained by leveraging in silico screens to identify genes involved in mediating interspecific interactions. These predictions will progress our understanding of these systems and lay the groundwork for future in vitro and in vivo experiments and bioengineering projects. A driver of host-manipulation and intracellular survival utilized by host-associated microbes is molecular mimicry, a critical mechanism that can occur at any level from DNA to protein structures. We applied protein structure prediction and alignment tools to explore host-associated bacterial structural proteomes for examples of protein structure mimicry. By leveraging the Legionella pneumophila proteome and its many known structural mimics, we developed and validated a screen that can be applied to virtually any host-microbe system to uncover signals of protein mimicry. These mimics represent candidate proteins that mediate host interactions in microbial proteomes. We successfully applied this screen to other microbes with demonstrated effects on global health, Helicobacter pylori and Wolbachia , identifying protein mimic candidates in each proteome. We discuss the roles these candidates may play in important Wolbachia -induced phenotypes and show that Wobachia infection can partially rescue the loss of one of these factors. This work demonstrates how a genome-wide screen for candidates of host-manipulation and intracellular survival offers an opportunity to identify functionally important genes in host-microbe systems.
Collapse
|
5
|
Otsugu M, Mine A, Uchida I, Miyake Y, Tachihara R, Fujiwara K, Ichimura A, Sato K, Tomura H. Low pH modulates lipopolysaccharide-induced tumor necrosis factor-alpha expression and macropinocytotic activity in RAW264.7 cells. J Recept Signal Transduct Res 2024; 44:63-71. [PMID: 39175331 DOI: 10.1080/10799893.2024.2395310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Inflammation triggers various types of diseases that need to be addressed. Macrophages play important roles in the inflammatory responses. As atherosclerosis progresses, macrophages transform into foam cells. Extracellular acidification is observed at and around bacterial infection and atherosclerotic sites. However, the effects of acidification on the inflammatory response of macrophages and the progression of atherosclerosis have not been fully understood. This study investigates the impact of extracellular acidification on lipopolysaccharide-induced tumor necrosis factor-alpha (TNF-α) expression and macropinocytotic activity in RAW264.7 cells. TNF-α expression is measured by real-time polymerase chain reaction (relative value to glyceraldehyde-3-phosphate dehydrogenase expression). Macropinocytotic activity is measured by neutral red uptake (absorbance at 540 nm). Results show that TNF-α expression increased with decreasing extracellular pH in both un-foamed and foamed cells. Macropinocytotic activity was upregulated at pH 6.8 in un-foamed cells, but downregulated in foamed cells stimulated at low pH. Proton-sensing G protein-coupled receptors (GPCRs) were involved in the expression of TNF-α and in the macropinocytotic activity of foamed cells. In conclusion, this study reveals that extracellular acidification differently affect various inflammatory responses such as LPS-induced TNF-α expression and macropinocytotic activity of RAW264.7 cells and different proton-sensing GPCRs are involved in the different inflammatory responses.
Collapse
Affiliation(s)
- Miku Otsugu
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ayumi Mine
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Izumi Uchida
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yuta Miyake
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ryo Tachihara
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kurumi Fujiwara
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ayako Ichimura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Koichi Sato
- Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hideaki Tomura
- Laboratory of Cell Signaling Regulation, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Institute of Endocrinology, Meiji University, Kawasaki, Japan
| |
Collapse
|
6
|
Ayesha A, Chow FWN, Leung PHM. Role of Legionella pneumophila outer membrane vesicles in host-pathogen interaction. Front Microbiol 2023; 14:1270123. [PMID: 37817751 PMCID: PMC10561282 DOI: 10.3389/fmicb.2023.1270123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Legionella pneumophila is an opportunistic intracellular pathogen that inhabits artificial water systems and can be transmitted to human hosts by contaminated aerosols. Upon inhalation, it colonizes and grows inside the alveolar macrophages and causes Legionnaires' disease. To effectively control and manage Legionnaires' disease, a deep understanding of the host-pathogen interaction is crucial. Bacterial extracellular vesicles, particularly outer membrane vesicles (OMVs) have emerged as mediators of intercellular communication between bacteria and host cells. These OMVs carry a diverse cargo, including proteins, toxins, virulence factors, and nucleic acids. OMVs play a pivotal role in disease pathogenesis by helping bacteria in colonization, delivering virulence factors into host cells, and modulating host immune responses. This review highlights the role of OMVs in the context of host-pathogen interaction shedding light on the pathogenesis of L. pneumophila. Understanding the functions of OMVs and their cargo provides valuable insights into potential therapeutic targets and interventions for combating Legionnaires' disease.
Collapse
Affiliation(s)
| | | | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Iliadi V, Staykova J, Iliadis S, Konstantinidou I, Sivykh P, Romanidou G, Vardikov DF, Cassimos D, Konstantinidis TG. Legionella pneumophila: The Journey from the Environment to the Blood. J Clin Med 2022; 11:jcm11206126. [PMID: 36294446 PMCID: PMC9605555 DOI: 10.3390/jcm11206126] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
An outbreak of a potentially fatal form of pneumonia in 1976 and in the annual convention of the American Legion was the first time that Legionella spp. was identified. Thereafter, the term Legionnaires’ disease (LD) was established. The infection in humans is transmitted by the inhalation of aerosols that contain the microorganisms that belong to the Legionellaceae family and the genus Legionella. The genus Legionella contains genetically heterogeneous species and serogroups. The Legionella pneumophila serogroup 1 (Lp1) is the most often detected strain in outbreaks of LD. The pathogenesis of LD infection initiates with the attachment of the bacterial cells to the host cells, and subsequent intracellular replication. Following invasion, Legionella spp. activates its virulence mechanisms: generation of specific compartments of Legionella-containing vacuole (LCV), and expression of genes that encode a type IV secretion system (T4SS) for the translocation of proteins. The ability of L. pneumophila to transmigrate across the lung’s epithelium barrier leads to bacteremia, spread, and invasion of many organs with subsequent manifestations, complications, and septic shock. The clinical manifestations of LD depend on the bacterial load in the aerosol, the virulence factors, and the immune status of the patient. The infection has two distinct forms: the non- pneumatic form or Pontiac fever, which is a milder febrile flu-like illness, and LD, a more severe form, which includes pneumonia. In addition, the extrapulmonary involvement of LD can include heart, brain, abdomen, and joints.
Collapse
Affiliation(s)
- Valeria Iliadi
- Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia
| | - Jeni Staykova
- Faculty of Public Health, Medical University of Sofia, Byalo More Str. 8, 1527 Sofia, Bulgaria
| | - Sergios Iliadis
- Izhevsk State Medical Academy, Kommunarov Street 281, 426034 Izhevsk, Russia
| | | | - Polina Sivykh
- State Budgetary Health City Polyclinic No 2 (GBUZ GB2) of Krasnodar, Seleznev Street 4/10, 350059 Krasnodar, Russia
| | - Gioulia Romanidou
- Nephrology Department, General Hospital “Sismanogleio”, 69100 Komotini, Greece
| | - Daniil F. Vardikov
- Russian Research Center for Radiology and Surgical Technologies of the Ministry of Health of the Russian Federation, Tkachey Str. 70-16, 192029 St. Petersburg, Russia
| | - Dimitrios Cassimos
- Pediatric Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Theocharis G. Konstantinidis
- Blood Transfusion Center, University General Hospital of Alexandroupolis Dragana Campus, 68100 Alexandroupolis, Greece
- Correspondence: ; Tel.: +30-2551-352005
| |
Collapse
|