1
|
Wu H, Liu Z, Li Y. Intestinal microbiota and respiratory system diseases: Relationships with three common respiratory virus infections. Microb Pathog 2025; 203:107500. [PMID: 40139334 DOI: 10.1016/j.micpath.2025.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
In recent years, the role of the intestinal microbiota in regulating host health and immune balance has attracted widespread attention. This study provides an in-depth analysis of the close relationship between the intestinal microbiota and respiratory system diseases, with a focus on three common respiratory virus infections, including respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and influenza virus. The research indicates that during RSV infection, there is a significant decrease in intestinal microbial diversity, suggesting the impact of the virus on the intestinal ecosystem. In SARS-CoV-2 infection, there are evident alterations in the intestinal microbiota, which are positively correlated with the severity of the disease. Similarly, influenza virus infection is associated with dysbiosis of the intestinal microbiota, and studies have shown that the application of specific probiotics exhibits beneficial effects against influenza virus infection. Further research indicates that the intestinal microbiota exerts a wide and profound impact on the occurrence and development of respiratory system diseases through various mechanisms, including modulation of the immune system and production of short-chain fatty acids (SCFAs). This article comprehensively analyzes these research advances, providing new perspectives and potential strategies for the prevention and treatment of future respiratory system diseases. This study not only deepens our understanding of the relationship between the intestinal microbiota and respiratory system diseases but also offers valuable insights for further exploring the role of host-microbiota interactions in the development of diseases.
Collapse
Affiliation(s)
- Haonan Wu
- Department of Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- The First Hospital of Jilin University, Changchun, China.
| | - Yanan Li
- Department of Respiratory, Children's Medical Center, The First Hospital of Jilin University, Changchun, China; Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Wilson JD, Dworsky-Fried M, Ismail N. Neurodevelopmental implications of COVID-19-induced gut microbiome dysbiosis in pregnant women. J Reprod Immunol 2024; 165:104300. [PMID: 39004033 DOI: 10.1016/j.jri.2024.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
The global public health emergency of COVID-19 in January 2020 prompted a surge in research focusing on the pathogenesis and clinical manifestations of the virus. While numerous reports have been published on the acute effects of COVID-19 infection, the review explores the multifaceted long-term implications of COVID-19, with a particular focus on severe maternal COVID-19 infection, gut microbiome dysbiosis, and neurodevelopmental disorders in offspring. Severe COVID-19 infection has been associated with heightened immune system activation and gastrointestinal symptoms. Severe COVID-19 may also result in gut microbiome dysbiosis and a compromised intestinal mucosal barrier, often referred to as 'leaky gut'. Increased gut permeability facilitates the passage of inflammatory cytokines, originating from the inflamed intestinal mucosa and gut, into the bloodstream, thereby influencing fetal development during pregnancy and potentially elevating the risk of neurodevelopmental disorders such as autism and schizophrenia. The current review discusses the role of cytokine signaling molecules, microglia, and synaptic pruning, highlighting their potential involvement in the pathogenesis of neurodevelopmental disorders following maternal COVID-19 infection. Additionally, this review addresses the potential of probiotic interventions to mitigate gut dysbiosis and inflammatory responses associated with COVID-19, offering avenues for future research in optimizing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Jacob D Wilson
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Michaela Dworsky-Fried
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada; LIFE Research Institute, Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
3
|
Folliero V, Ferravante C, Dell’Annunziata F, Brancaccio RN, D’Agostino Y, Giurato G, Manente R, Terenzi I, Greco R, Boccia G, Pagliano P, Weisz A, Franci G, Rizzo F. Influence of Mycobiota in the Nasopharyngeal Tract of COVID-19 Patients. Microorganisms 2024; 12:1468. [PMID: 39065235 PMCID: PMC11279359 DOI: 10.3390/microorganisms12071468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The nasopharyngeal tract contains a complex microbial community essential to maintaining host homeostasis. Recent studies have shown that SARS-CoV-2 infection changes the microbial composition of the nasopharynx. Still, little is known about how it affects the fungal microbiome, which could provide valuable insights into disease pathogenesis. Nasopharyngeal swabs were collected from 55 patients, during three distinct COVID-19 waves that occurred in the Campania Region (southern Italy). An RNA-seq-based analysis was performed to evaluate changes in mycobiota diversity, showing variations depending on the disease's severity and the sample collection wave. The phyla Basidiomycota and Ascomycota were shown to have higher abundance in patients with severe symptoms. Furthermore, the diversity of the fungal population was greater in the second wave. Conclusion: According to our research, COVID-19 induces significant dysbiosis of the fungal microbiome, which may contribute to disease pathogenesis, and understanding its underlying mechanisms could contribute to developing effective treatments.
Collapse
Affiliation(s)
- Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
| | - Carlo Ferravante
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
- Medical Genomics Program, AOU ‘S. Giovanni di Dio e Ruggi d’Aragona’, University of Salerno, 84131 Salerno, Italy
| | - Federica Dell’Annunziata
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Rosario Nicola Brancaccio
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
- Medical Genomics Program, AOU ‘S. Giovanni di Dio e Ruggi d’Aragona’, University of Salerno, 84131 Salerno, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
- Genome Research Center for Health—CRGS, Campus of Medicine, University of Salerno, 84081 Salerno, Italy
| | - Roberta Manente
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ilaria Terenzi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
| | - Rita Greco
- UOC Microbiologia e Virologia, AORN S. Anna e S. Sebastiano, 81100 Caserta, Italy;
| | - Giovanni Boccia
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
- UOC Igiene Ospedaliera ed Epidemiologia, DAI Igiene Sanitaria e Valutativa, San Giovanni di Dio e Ruggi D’Aragona, University of Salerno, 84131 Salerno, Italy
| | - Pasquale Pagliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
- Infectious Disease Unit, San Giovanni di Dio e Ruggi D’Aragona, University of Salerno, 84131 Salerno, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
- Medical Genomics Program, AOU ‘S. Giovanni di Dio e Ruggi d’Aragona’, University of Salerno, 84131 Salerno, Italy
- Genome Research Center for Health—CRGS, Campus of Medicine, University of Salerno, 84081 Salerno, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (V.F.); (F.D.); (R.M.); (G.B.); (P.P.)
- Clinical Pathology and Microbiology Unit, San Giovanni di Dio e Ruggi D’Aragona, University of Salerno, 84131 Salerno, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy; (C.F.); (R.N.B.); (Y.D.); (G.G.); (I.T.); (A.W.)
- Genome Research Center for Health—CRGS, Campus of Medicine, University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
4
|
Martín Giménez VM, Modrego J, Gómez-Garre D, Manucha W, de las Heras N. Gut Microbiota Dysbiosis in COVID-19: Modulation and Approaches for Prevention and Therapy. Int J Mol Sci 2023; 24:12249. [PMID: 37569625 PMCID: PMC10419057 DOI: 10.3390/ijms241512249] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Inflammation and oxidative stress are critical underlying mechanisms associated with COVID-19 that contribute to the complications and clinical deterioration of patients. Additionally, COVID-19 has the potential to alter the composition of patients' gut microbiota, characterized by a decreased abundance of bacteria with probiotic effects. Interestingly, certain strains of these bacteria produce metabolites that can target the S protein of other coronaviruses, thereby preventing their transmission and harmful effects. At the same time, the presence of gut dysbiosis can exacerbate inflammation and oxidative stress, creating a vicious cycle that perpetuates the disease. Furthermore, it is widely recognized that the gut microbiota can metabolize various foods and drugs, producing by-products that may have either beneficial or detrimental effects. In this regard, a decrease in short-chain fatty acid (SCFA), such as acetate, propionate, and butyrate, can influence the overall inflammatory and oxidative state, affecting the prevention, treatment, or worsening of COVID-19. This review aims to explore the current evidence regarding gut dysbiosis in patients with COVID-19, its association with inflammation and oxidative stress, the molecular mechanisms involved, and the potential of gut microbiota modulation in preventing and treating SARS-CoV-2 infection. Given that gut microbiota has demonstrated high adaptability, exploring ways and strategies to maintain good intestinal health, as well as an appropriate diversity and composition of the gut microbiome, becomes crucial in the battle against COVID-19.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, San Juan 5400, Argentina;
| | - Javier Modrego
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos-Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain;
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain
| | - Walter Manucha
- Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina;
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Mendoza 5500, Argentina
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Plaza Ramón y Cajal, s/n. Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
5
|
Banerjee A, Somasundaram I, Das D, Jain Manoj S, Banu H, Mitta Suresh P, Paul S, Bisgin A, Zhang H, Sun XF, Duttaroy AK, Pathak S. Functional Foods: A Promising Strategy for Restoring Gut Microbiota Diversity Impacted by SARS-CoV-2 Variants. Nutrients 2023; 15:nu15112631. [PMID: 37299594 DOI: 10.3390/nu15112631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Natural herbs and functional foods contain bioactive molecules capable of augmenting the immune system and mediating anti-viral functions. Functional foods, such as prebiotics, probiotics, and dietary fibers, have been shown to have positive effects on gut microbiota diversity and immune function. The use of functional foods has been linked to enhanced immunity, regeneration, improved cognitive function, maintenance of gut microbiota, and significant improvement in overall health. The gut microbiota plays a critical role in maintaining overall health and immune function, and disruptions to its balance have been linked to various health problems. SARS-CoV-2 infection has been shown to affect gut microbiota diversity, and the emergence of variants poses new challenges to combat the virus. SARS-CoV-2 recognizes and infects human cells through ACE2 receptors prevalent in lung and gut epithelial cells. Humans are prone to SARS-CoV-2 infection because their respiratory and gastrointestinal tracts are rich in microbial diversity and contain high levels of ACE2 and TMPRSS2. This review article explores the potential use of functional foods in mitigating the impact of SARS-CoV-2 variants on gut microbiota diversity, and the potential use of functional foods as a strategy to combat these effects.
Collapse
Affiliation(s)
- Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Indumathi Somasundaram
- Department of Biotechnology Engineering, Kolhapur Institute of Technology's College of Engineering, Kolhapur 416012, Maharashtra, India
| | - Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Samatha Jain Manoj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Husaina Banu
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Pavane Mitta Suresh
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| | - Sujay Paul
- School of Engineering and Sciences, Tecnologico de Monterrey, Campus Queretaro, San Pablo 76130, Mexico
| | - Atil Bisgin
- Department of Medical Genetics, Medical Faculty, Cukurova University, Adana 01250, Turkey
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, SE-701 82 Orebro, Sweden
| | - Xiao-Feng Sun
- Division of Ocology, Department of Biomedical and Clinical Sciences, Linkoping University, SE-581 83 Linkoping, Sweden
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai 603103, Tamil Nadu, India
| |
Collapse
|
6
|
Vojdani A, Vojdani E, Saidara E, Maes M. Persistent SARS-CoV-2 Infection, EBV, HHV-6 and Other Factors May Contribute to Inflammation and Autoimmunity in Long COVID. Viruses 2023; 15:v15020400. [PMID: 36851614 PMCID: PMC9967513 DOI: 10.3390/v15020400] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
A novel syndrome called long-haul COVID or long COVID is increasingly recognized in a significant percentage of individuals within a few months after infection with SARS-CoV-2. This disorder is characterized by a wide range of persisting, returning or even new but related symptoms that involve different tissues and organs, including respiratory, cardiac, vascular, gastrointestinal, musculo-skeletal, neurological, endocrine and systemic. Some overlapping symptomatologies exist between long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Very much like with long ME/CFS, infections with herpes family viruses, immune dysregulation, and the persistence of inflammation have been reported as the most common pattern for the development of long COVID. This review describes several factors and determinants of long COVID that have been proposed, elaborating mainly on viral persistence, reactivation of latent viruses such as Epstein-Barr virus and human herpesvirus 6 which are also associated with the pathology of ME/CFS, viral superantigen activation of the immune system, disturbance in the gut microbiome, and multiple tissue damage and autoimmunity. Based on these factors, we propose diagnostic strategies such as the measurement of IgG and IgM antibodies against SARS-CoV-2, EBV, HHV-6, viral superantigens, gut microbiota, and biomarkers of autoimmunity to better understand and manage this multi-factorial disorder that continues to affect millions of people in the world.
Collapse
Affiliation(s)
- Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA
- Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
- Correspondence: ; Tel.: +1-310-657-1077
| | | | - Evan Saidara
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, 1873 Rama 4 Road, Pathumwan, Bangkok 10330, Thailand
| |
Collapse
|
7
|
Li J, Ghosh TS, McCann R, Mallon P, Hill C, Draper L, Schult D, Fanning LJ, Shannon R, Sadlier C, Horgan M, O’Mahony L, O’Toole PW. Robust cross-cohort gut microbiome associations with COVID-19 severity. Gut Microbes 2023; 15:2242615. [PMID: 37550964 PMCID: PMC10411309 DOI: 10.1080/19490976.2023.2242615] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Although many recent studies have examined associations between the gut microbiome and COVID-19 disease severity in individual patient cohorts, questions remain on the robustness across international cohorts of the biomarkers they reported. Here, we performed a meta-analysis of eight shotgun metagenomic studies of COVID-19 patients (comprising 1,023 stool samples) and 23 > 16S rRNA gene amplicon sequencing (16S) cohorts (2,415 total stool samples). We found that disease severity (as defined by the WHO clinical progression scale) was associated with taxonomic and functional microbiome differences. This alteration in gut microbiome configuration peaks at days 7-30 post diagnosis, after which the gut microbiome returns to a configuration that becomes more similar to that of healthy controls over time. Furthermore, we identified a core set of species that were consistently associated with disease severity across shotgun metagenomic and 16S cohorts, and whose abundance can accurately predict disease severity category of SARS-CoV-2 infected subjects, with Actinomyces oris abundance predicting population-level mortality rate of COVID-19. Additionally, we used relational diet-microbiome databases constructed from cohort studies to predict microbiota-targeted diet patterns that would modulate gut microbiota composition toward that of healthy controls. Finally, we demonstrated the association of disease severity with the composition of intestinal archaeal, fungal, viral, and parasitic communities. Collectively, this study has identified robust COVID-19 microbiome biomarkers, established accurate predictive models as a basis for clinical prognostic tests for disease severity, and proposed biomarker-targeted diets for managing COVID-19 infection.
Collapse
Affiliation(s)
- Junhui Li
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Tarini Shankar Ghosh
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Rachel McCann
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, St Vincent’s University Hospital, Dublin, Ireland
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, St Vincent’s University Hospital, Dublin, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lorraine Draper
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David Schult
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Liam J. Fanning
- Department of Medicine, University College Cork, Cork, Ireland
| | - Robert Shannon
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Corinna Sadlier
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Mary Horgan
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Liam O’Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Zhou B, Pang X, Wu J, Liu T, Wang B, Cao H. Gut microbiota in COVID-19: new insights from inside. Gut Microbes 2023; 15:2201157. [PMID: 37078497 PMCID: PMC10120564 DOI: 10.1080/19490976.2023.2201157] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023] Open
Abstract
The epidemic of coronavirus disease-19 (COVID-19) has grown to be a global health threat. Gastrointestinal symptoms are thought to be common clinical manifestations apart from a series of originally found respiratory symptoms. The human gut harbors trillions of microorganisms that are indispensable for complex physiological processes and homeostasis. Growing evidence demonstrate that gut microbiota alteration is associated with COVID-19 progress and severity, and post-COVID-19 syndrome, characterized by decrease of anti-inflammatory bacteria like Bifidobacterium and Faecalibacterium and enrichment of inflammation-associated microbiota including Streptococcus and Actinomyces. Therapeutic strategies such as diet, probiotics/prebiotics, herb, and fecal microbiota transplantation have shown positive effects on relieving clinical symptoms. In this article, we provide and summarize the recent evidence about the gut microbiota and their metabolites alterations during and after COVID-19 infection and focus on potential therapeutic strategies targeting gut microbiota. Understanding the connections between intestinal microbiota and COVID-19 would provide new insights into COVID-19 management in the future.
Collapse
Affiliation(s)
- Bingqian Zhou
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Xiaoqi Pang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Jingyi Wu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Tianyu Liu
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Bangmao Wang
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| | - Hailong Cao
- Department of Gastroenterology and Hepatology, General Hospital, Tianjin Medical University, National Key Clinical Specialty, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, Tianjin, China
| |
Collapse
|
9
|
Mycobiome profiling of nasopharyngeal region of SARS-CoV-2 infected individuals. Microbes Infect 2023; 25:105059. [PMID: 36241143 PMCID: PMC9553963 DOI: 10.1016/j.micinf.2022.105059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 02/07/2023]
Abstract
The present cross-sectional study aims to understand the fungal community composition of the nasopharyngeal region of SARS-CoV-2 infected individuals and how the infection influences the mycobiome therein. The infection significantly (p < 0.05) influenced the alpha diversity. Interestingly, a higher abundance of Cladosporium and Alternaria was noted in the infected individuals and inter-individual variation in mycobiome composition was well supported by beta dispersion analysis (p < 0.05). Moreover, decrease in Aspergillus abundance was observed in infected patients across the four age groups. This study provides insight into the alteration in mycobiome during the viral disease progression and demands continuous investigation to monitor fungal infections.
Collapse
|
10
|
Malik J, Ahmed S, Yaseen Z, Alanazi M, Alharby TN, Alshammari HA, Anwar S. Association of SARS-CoV-2 and Polypharmacy with Gut-Lung Axis: From Pathogenesis to Treatment. ACS OMEGA 2022; 7:33651-33665. [PMID: 36164411 PMCID: PMC9491241 DOI: 10.1021/acsomega.2c02524] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/29/2022] [Indexed: 06/12/2023]
Abstract
SARS-CoV-2 is a novel infectious contagion leading to COVID-19 disease. The virus has affected the lives of millions of people across the globe with a high mortality rate. It predominantly affects the lung (respiratory system), but it also affects other organs, including the cardiovascular, psychological, and gastrointestinal (GIT) systems. Moreover, elderly and comorbid patients with compromised organ functioning and pre-existing polypharmacy have worsened COVID-19-associated complications. Microbiota (MB) of the lung plays an important role in developing COVID-19. The extent of damage mainly depends on the predominance of opportunistic pathogens and, inversely, with the predominance of advantageous commensals. Changes in the gut MB are associated with a bidirectional shift in the interaction among the gut with a number of vital human organs, which leads to severe disease symptoms. This review focuses on dysbiosis in the gut-lung axis, COVID-19-induced worsening of comorbidities, and the influence of polypharmacy on MB.
Collapse
Affiliation(s)
- Jonaid
Ahmad Malik
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, Guwahati, Assam 781101, India
- Department
of Biomedical Engineering, Indian Institute
of Technology Rupnagar 140001, India
| | - Sakeel Ahmed
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat 382355, India
| | - Zahid Yaseen
- Department
of Pharmaceutical Biotechnology, Delhi Pharmaceutical
Sciences and Research University, New Delhi, Delhi 110017, India
| | - Muteb Alanazi
- Department
of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
| | - Tareq Nafea Alharby
- Department
of Clinical Pharmacy, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
| | | | - Sirajudheen Anwar
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81422, Saudi Arabia
| |
Collapse
|
11
|
Gang J, Wang H, Xue X, Zhang S. Microbiota and COVID-19: Long-term and complex influencing factors. Front Microbiol 2022; 13:963488. [PMID: 36033885 PMCID: PMC9417543 DOI: 10.3389/fmicb.2022.963488] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). According to the World Health Organization statistics, more than 500 million individuals have been infected and more than 6 million deaths have resulted worldwide. Although COVID-19 mainly affects the respiratory system, considerable evidence shows that the digestive, cardiovascular, nervous, and reproductive systems can all be involved. Angiotensin-converting enzyme 2 (AEC2), the target of SARS-CoV-2 invasion of the host is mainly distributed in the respiratory and gastrointestinal tract. Studies found that microbiota contributes to the onset and progression of many diseases, including COVID-19. Here, we firstly conclude the characterization of respiratory, gut, and oral microbial dysbiosis, including bacteria, fungi, and viruses. Then we explore the potential mechanisms of microbial involvement in COVID-19. Microbial dysbiosis could influence COVID-19 by complex interactions with SARS-CoV-2 and host immunity. Moreover, microbiota may have an impact on COVID-19 through their metabolites or modulation of ACE2 expression. Subsequently, we generalize the potential of microbiota as diagnostic markers for COVID-19 patients and its possible association with post-acute COVID-19 syndrome (PACS) and relapse after recovery. Finally, we proposed directed microbiota-targeted treatments from the perspective of gut microecology such as probiotics and prebiotics, fecal transplantation and antibiotics, and other interventions such as traditional Chinese medicine, COVID-19 vaccines, and ACE2-based treatments.
Collapse
Affiliation(s)
- Jiaqi Gang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Oncology, Xiuwu County People’s Hospital, Jiaozuo, China
| | - Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangsheng Xue
- Department of Oncology, Xiuwu County People’s Hospital, Jiaozuo, China
| | - Shu Zhang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Gastrointestinal Involvement in SARS-CoV-2 Infection. Viruses 2022; 14:v14061188. [PMID: 35746659 PMCID: PMC9228950 DOI: 10.3390/v14061188] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 has evolved into a virus that primarily results in mild or asymptomatic disease, making its transmission more challenging to control. In addition to the respiratory tract, SARS-CoV-2 also infects the digestive tract. Some gastrointestinal symptoms occur with or before respiratory symptoms in patients with COVID-19. Respiratory infections are known to cause intestinal immune impairment and gastrointestinal symptoms. When the intestine is inflamed, cytokines affect the lung immune response and inflammation through blood circulation. The gastrointestinal microbiome may be a modifiable factor in determining the risk of SARS-CoV-2 infection and disease severity. The development of oral SARS-CoV-2 vaccine candidates and the maintenance of gut microbiota profiles may contribute to the early control of COVID-19 outbreaks. To this end, this review summarizes information on the gastrointestinal complications caused by SARS-CoV-2, SARS-CoV-2 infection, the gastrointestinal–lung axis immune response, potential control strategies for oral vaccine candidates and maintaining intestinal microbiota homeostasis.
Collapse
|