1
|
Liu W, Chen S, Yang J, Chen Y, Yang Q, Lu L, Li J, Yang T, Zhang G, Hu J. Characterization of blood and urine microbiome temporal variability in patients with acute myeloid leukemia. Microb Pathog 2025:107734. [PMID: 40449763 DOI: 10.1016/j.micpath.2025.107734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/09/2025] [Accepted: 05/21/2025] [Indexed: 06/03/2025]
Abstract
BACKGROUND Investigating the microbiota of blood and urine from acute myeloid leukemia (AML) patients is essential to unravel the complex role of microbiota in systemic host-microbe interactions and implications. METHODS We conducted a longitudinal observational study to characterize the temporal dynamics of blood and urine microbiota in 27 AML patients, utilizing metagenomic analysis pipeline for microbial identification to identify disease-associated microbial signatures. RESULTS The composition of blood and urine microbiota of AML was dominated by Proteobacteria phylum in blood, Firmicutes phylum in urine. The species and diversity of blood and urine microbiota did not have difference between AML patients and healthy controls. Restitution of alpha and beta diversity of blood microbiota and urine microbiota to resemble that of healthy controls occurred after cessation of treatment. Temporal variation of urine microbiome was higher than blood after treatment which was closely related to pathogenic bacteria and beneficial bacteria measured by coefficient of variation (CV) of alpha diversity. The temporal variability of urine microbiota was significantly correlated with platelet and exposure of levofloxacin. The variation of microbiome of AML patients with infection was found that the relative abundance of Burkholderia significantly enriched in blood and urine which had high accuracy and sensitivity. The correlation between blood microbiota and serum amino acid metabolites was similar to that between gut microbiota and serum metabolites. CONCLUSION This study represents the first comprehensive investigation to quantify the longitudinal variability of blood and urine microbiota in AML patients, revealing distinct patterns compared to gut microbiota and associations with adverse clinical outcomes. Our findings highlight the potential of leveraging stabilizing taxa as a target for microbiome restoration.
Collapse
Affiliation(s)
- Wanying Liu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaozhen Chen
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China; Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiajie Yang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Fujian Medical University Union Hospital, Fuzhou, China
| | - Yanxin Chen
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Qinwen Yang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Fujian Medical University Union Hospital, Fuzhou, China
| | - Lihua Lu
- Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiazheng Li
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Fujian Medical University Union Hospital, Fuzhou, China
| | - Ting Yang
- Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Department of Hematology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, China
| | - Guanbin Zhang
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Laboratory Medicine, Fujian Medical University, Fuzhou, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, China; Mianyang People's Hospital, Mianyang, China
| | - Jianda Hu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China; Fujian Medical University Union Hospital, Fuzhou, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Charitos IA, Scacco S, Cotoia A, Castellaneta F, Castellana G, Pasqualotto F, Venneri M, Ferrulli A, Aliani M, Santacroce L, Carone M. Intestinal Microbiota Dysbiosis Role and Bacterial Translocation as a Factor for Septic Risk. Int J Mol Sci 2025; 26:2028. [PMID: 40076650 PMCID: PMC11900423 DOI: 10.3390/ijms26052028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/18/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
The human immune system is closely linked to microbiota such as a complex symbiotic relationship during the coevolution of vertebrates and microorganisms. The transfer of microorganisms from the mother's microbiota to the newborn begins before birth during gestation and is considered the initial phase of the intestinal microbiota (IM). The gut is an important site where microorganisms can establish colonies. The IM contains polymicrobial communities, which show complex interactions with diet and host immunity. The tendency towards dysbiosis of the intestinal microbiota is influenced by local but also extra-intestinal factors such as inflammatory processes, infections, or a septic state that can aggravate it. Pathogens could trigger an immune response, such as proinflammatory responses. In addition, changes in the host immune system also influence the intestinal community and structure with additional translocation of pathogenic and non-pathogenic bacteria. Finally, local intestinal inflammation has been found to be an important factor in the growth of pathogenic microorganisms, particularly in its role in sepsis. The aim of this article is to be able to detect the current knowledge of the mechanisms that can lead to dysbiosis of the intestinal microbiota and that can cause bacterial translocation with a risk of infection or septic state and vice versa.
Collapse
Affiliation(s)
- Ioannis Alexandros Charitos
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
- Doctoral School, Applied Neurosciences, University of Bari (UNIBA), 70124 Bari, Italy
| | - Salvatore Scacco
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Scuola di Medicina, Università Degli Studi di Bari, Aldo Moro, 70124 Bari, Italy;
- U.O. Medicina, Ospedale Mater Dei-CBH, 70125 Bari, Italy
| | - Antonella Cotoia
- Department of Intensive Care, University Hospital of Foggia, 71121 Foggia, Italy
| | - Francesca Castellaneta
- U.O.C. Servizio di Immunoematologia e Medicina Trasfusionale—S.I.M.T. Ospedale Di Venere, 70131 Bari, Italy;
| | - Giorgio Castellana
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| | - Federico Pasqualotto
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
- Department of Public Health and Infectious Diseases, Pulmonary Division, Sapienza University of Rome, Policlinico Umberto I Hospital, Rome, Via del Policlinico 155, 00155 Rome, Italy
| | - Maria Venneri
- Genomics and Proteomics Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (M.V.); (A.F.)
| | - Angela Ferrulli
- Genomics and Proteomics Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (M.V.); (A.F.)
| | - Maria Aliani
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, The University of Bari, 70124 Bari, Italy;
| | - Mauro Carone
- Pneumology and Respiratory Rehabilitation Unit, Istituti Clinici Scientifici Maugeri IRCCS, “Istitute” of Bari, 70124 Bari, Italy; (I.A.C.); (G.C.); (F.P.); (M.A.); (M.C.)
| |
Collapse
|
3
|
Mongruel ACB, Medici EP, Machado RZ, Clay K, André MR. Characterization of the Blood Bacterial Microbiota in Lowland Tapirs ( Tapirus terrestris), a Vulnerable Species in Brazil. Microorganisms 2024; 12:2270. [PMID: 39597659 PMCID: PMC11596849 DOI: 10.3390/microorganisms12112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Microbiome studies targeting hypervariable regions of the 16S rRNA gene are suitable for understanding interactions between animals and their associated bacteria. While many studies focus on the gut microbiome, assessments of blood microbiota remain scarce despite the prevalence of blood-borne pathogens in vertebrates. This study aimed to investigate the bacterial community in blood samples from 79 living and 7 road-killed lowland tapirs (Tapirus terrestris), a vulnerable species, sampled in two biomes in midwestern Brazil: Pantanal and Cerrado. Animals were categorized by condition (living or road-killed), sex, age, and biome. V3-V4 16S rRNA fragments were obtained from 86 blood samples and 4 negative controls. After filtering contaminants, 13,742,198 sequences representing 2146 ASVs were analyzed. Alpha diversity significantly differed by condition, while beta diversity differed by condition, site, and age (adults vs. sub-adults). For living animals (79/86 samples), alpha diversity showed no significant differences, but beta diversity differed by age. Different vector-borne bacterial pathogens, including Anaplasmataceae, Bartonella, and Borrelia spp., were detected. Additionally, evidence of transient translocation of microbial communities from other body regions to the bloodstream was observed. Amplification of bacterial 16S rRNA from blood samples of wild T. terrestris provided novel information about the diversity of blood-borne microbiota of lowland tapirs, members of a poorly studied mammalian family. Next-generation sequencing proved to be a valuable tool for screening potential vector-borne pathogens in this host.
Collapse
Affiliation(s)
- Anna Claudia Baumel Mongruel
- Vector-Borne Bioagents Laboratory (VBBL), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Jaboticabal 14884-900, São Paulo, Brazil; (A.C.B.M.); (R.Z.M.)
| | - Emília Patrícia Medici
- Lowland Tapir Conservation Initiative (LTCI), Institute for Ecological Research (IPÊ), Campo Grande 79046-150, Mato Grosso do Sul, Brazil;
- Escola Superior de Conservação Ambiental e Sustentabilidade (ESCAS/IPÊ), Nazaré Paulista 12960-000, São Paulo, Brazil
- Tapir Specialist Group (TSG), International Union for Conservation of Nature (IUCN SSC), Campo Grande 79046-150, Mato Grosso do Sul, Brazil
| | - Rosangela Zacarias Machado
- Vector-Borne Bioagents Laboratory (VBBL), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Jaboticabal 14884-900, São Paulo, Brazil; (A.C.B.M.); (R.Z.M.)
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70118, USA;
| | - Marcos Rogério André
- Vector-Borne Bioagents Laboratory (VBBL), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Jaboticabal 14884-900, São Paulo, Brazil; (A.C.B.M.); (R.Z.M.)
| |
Collapse
|
4
|
Huo C, Jiao X, Wang Y, Jiang Q, Ning F, Wang J, Jia Q, Zhu Z, Tian L. Silica aggravates pulmonary fibrosis through disrupting lung microbiota and amino acid metabolites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174028. [PMID: 38889818 DOI: 10.1016/j.scitotenv.2024.174028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Silicosis, recognized as a severe global public health issue, is an irreversible pulmonary fibrosis caused by the long-term inhalation of silica particles. Given the intricate pathogenesis of silicosis, there is no effective intervention measure, which poses a severe threat to public health. Our previous study reported that dysbiosis of lung microbiota is associated with the development of pulmonary fibrosis, potentially involving the lipopolysaccharides/toll-like receptor 4 pathway. Similarly, the process of pulmonary fibrosis is accompanied by alterations in metabolic pathways. This study employed a combined approach of 16S rDNA sequencing and metabolomic analysis to investigate further the role of lung microbiota in silicosis delving deeper into the potential pathogenesis of silicosis. Silica exposure can lead to dysbiosis of the lung microbiota and the occurrence of pulmonary fibrosis, which was alleviated by a combination antibiotic intervention. Additionally, significant metabolic disturbances were found in silicosis, involving 85 differential metabolites among the three groups, which are mainly focused on amino acid metabolic pathways. The changed lung metabolites showed a substantial correlation with lung microbiota. The relative abundance of Pseudomonas negatively correlated with L-Aspartic acid, L-Glutamic acid, and L-Threonine levels. These results indicate that dysbiosis in pulmonary microbiota exacerbates silica-induced fibrosis through impacts on amino acid metabolism, providing new insights into the potential mechanisms and interventions of silicosis.
Collapse
Affiliation(s)
- Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xukun Jiao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Fuao Ning
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
5
|
Santacroce L, Charitos IA, Colella M, Palmirotta R, Jirillo E. Blood Microbiota and Its Products: Mechanisms of Interference with Host Cells and Clinical Outcomes. Hematol Rep 2024; 16:440-453. [PMID: 39051416 PMCID: PMC11270377 DOI: 10.3390/hematolrep16030043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
In healthy conditions, blood was considered a sterile environment until the development of new analytical approaches that allowed for the detection of circulating bacterial ribosomal DNA. Currently, debate exists on the origin of the blood microbiota. According to advanced research using dark field microscopy, fluorescent in situ hybridization, flow cytometry, and electron microscopy, so-called microbiota have been detected in the blood. Conversely, others have reported no evidence of a common blood microbiota. Then, it was hypothesized that blood microbiota may derive from distant sites, e.g., the gut or external contamination of blood samples. Alteration of the blood microbiota's equilibrium may lead to dysbiosis and, in certain cases, disease. Cardiovascular, respiratory, hepatic, kidney, neoplastic, and immune diseases have been associated with the presence of Gram-positive and Gram-negative bacteria and/or their products in the blood. For instance, lipopolysaccharides (LPSs) and endotoxins may contribute to tissue damage, fueling chronic inflammation. Blood bacteria can interact with immune cells, especially with monocytes that engulf microorganisms and T lymphocytes via spontaneous binding to their membranes. Moreover, LPSs, extracellular vesicles, and outer membrane vesicles interact with red blood cells and immune cells, reaching distant organs. This review aims to describe the composition of blood microbiota in healthy individuals and those with disease conditions. Furthermore, special emphasis is placed on the interaction of blood microbiota with host cells to better understand disease mechanisms.
Collapse
Affiliation(s)
- Luigi Santacroce
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
| | - Ioannis Alexandros Charitos
- Istituti Clinici Scientifici Maugeri IRCCS, Pneumology and Respiratory Rehabilitation Unit, Institute of Bari, 70124 Bari, Italy;
| | - Marica Colella
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
- Doctoral School, eCampus University, 22060 Novedrate, Italy
| | - Raffaele Palmirotta
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
| | - Emilio Jirillo
- Section of Microbiology and Virology, Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy (R.P.); (E.J.)
| |
Collapse
|
6
|
Traoré SG, Fokou G, Wognin AS, Dié SAG, Amanzou NAA, Heitz-Tokpa K, Tetchi SM, Seko MO, Sanhoun AR, Traoré A, Anoh EA, Tiembre I, Koussemon-Camara M, Akoua-Koffi C, Bonfoh B. Assessment of handwashing impact on detection of SARS-CoV-2, Staphylococcus aureus, Escherichia coli on hands in rural and urban settings of Côte d'Ivoire during COVID-19 pandemic. BMC Public Health 2024; 24:1380. [PMID: 38778328 PMCID: PMC11112913 DOI: 10.1186/s12889-024-18838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Handwashing is the first line of hygiene measures and one of the oldest methods of preventing the spread of infectious diseases. Despite its efficacy in the health system, handwashing is often inadequately practiced by populations. This study aimed to assess the presence of SARS-CoV-2, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) on hands as indicators of lack of hand hygiene during COVID 19 pandemic. METHODS A cross-sectional study was conducted in rural Taabo and urban Abidjan (Côte d'Ivoire) from January to September 2021. A total of 384 participants from 384 households were included in the study. The total households were distributed proportionally within various municipalities in the two study areas according to the number of households in each municipality, based on data of the National Institute of Statistics from the 2014 general population census. Hand swabbing of the 384 participants within households (320 in Abidjan and 64 in Taabo) was performed for the enumeration of E. coli and S aureus, using laboratory standard method and for the detection of SARS-CoV-2 by RT-qPCR. A binary logistic regression model was built with the outcome variable presence of Staphylococcus spp. on hands of respondents that was categorized into binary variables, Staphylococcus spp. (1 = presence, 0 = absence) for the Risk Ratio estimation. Place of living, sex, handwashing, education and age group were used to adjust the model to observe the effects of these explanatory variables. RESULTS No presence of SARS-CoV-2 virus was detected on the hands of respondents in both sites. However, in urban Abidjan, only Staphylococcus spp. (Coagulase Negative Staphylococci) was found on the hands of 233 (72.8%, 95%CI: 67.7-77.4) respondents with the average load of 0.56 CFU/ Cm2 (95% CI, 0.52-0.60). Meanwhile, in rural Taabo, Staphylococcus spp. (Coagulase Negative Staphylococci) and E. coli were found on the hands of 40 (62.5%, 95%CI: 50.3-73.3) and 7 (10.9%, 95%CI: 5.4-20.9) respondents with the respective average load of 0.49 CFU/ Cm2 (95% CI, 0.39-0.59) and 0.08 CFU/ Cm2 (95% CI, 0.03-0.18). Participants living in rural Taabo were less likely to have Staphylococcus spp. on their hands (RR = 0.811; 95%IC: 0.661-0.995) compared to those living in urban Abidjan. CONCLUSIONS No SARS-CoV-2 was detected on the hands of participants in both sites, suggesting that our study did not show direct transmission through hands. No E. coli was found in urban Abidjan while E. coli was found on the hands of participants in rural Taabo indicating poor hand washing and disinfection practices in rural Taabo. Living in urban Abidjan is statistically associated to having Staphylococcus spp. on hands. Further studies are necessary especially to understand to what extent the presence of Staphylococcus spp. on hands indicates a higher infection or fecal colonization rates in the case of E. coli.
Collapse
Affiliation(s)
- Sylvain Gnamien Traoré
- Université Peleforo Gon Coulibaly, Korhogo, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Gilbert Fokou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | | | - Nogbou Andetchi Aubin Amanzou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Virtuelle de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Kathrin Heitz-Tokpa
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | - Malik Orou Seko
- Ecole Inter-Etats des Sciences et Médecine Vétérinaires, Dakar, Sénégal.
| | - Aimé Roland Sanhoun
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Adjaratou Traoré
- Centre Hospitalier Universitaire de Bouaké, Bouaké, Côte d'Ivoire
| | | | - Issaka Tiembre
- Institut National d'Hygiène Publique, Abidjan, Côte d'Ivoire
| | | | - Chantal Akoua-Koffi
- Centre Hospitalier Universitaire de Bouaké, Bouaké, Côte d'Ivoire
- UFR Sciences Médicales de l'Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
7
|
Nazeer N, Gurjar V, Ratre P, Dewangan R, Zaidi K, Tiwari R, Soni N, Bhargava A, Mishra PK. Cardiovascular disease risk assessment through sensing the circulating microbiome with perovskite quantum dots leveraging deep learning models for bacterial species selection. Mikrochim Acta 2024; 191:255. [PMID: 38594377 DOI: 10.1007/s00604-024-06343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
Perovskite quantum dots (PQDs) are novel nanomaterials wherein perovskites are used to formulate quantum dots (QDs). The present study utilizes the excellent fluorescence quantum yields of these nanomaterials to detect 16S rRNA of circulating microbiome for risk assessment of cardiovascular diseases (CVDs). A long short-term memory (LSTM) deep learning model was used to find the association of the circulating bacterial species with CVD risk, which showed the abundance of three different bacterial species (Bauldia litoralis (BL), Hymenobacter properus (HYM), and Virgisporangium myanmarense (VIG)). The observations suggested that the developed nano-sensor provides high sensitivity, selectivity, and applicability. The observed sensitivities for Bauldia litoralis, Hymenobacter properus, and Virgisporangium myanmarense were 0.606, 0.300, and 0.281 fg, respectively. The developed sensor eliminates the need for labelling, amplification, quantification, and biochemical assessments, which are more labour-intensive, time-consuming, and less reliable. Due to the rapid detection time, user-friendly nature, and stability, the proposed method has a significant advantage in facilitating point-of-care testing of CVDs in the future. This may also facilitate easy integration of the approach into various healthcare settings, making it accessible and valuable for resource-constrained environments.
Collapse
Affiliation(s)
- Nazim Nazeer
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Vikas Gurjar
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Rakhi Dewangan
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Kaniz Zaidi
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Rajnarayan Tiwari
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
| | - Arpit Bhargava
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India
- Faculty of Science, Ram Krishna Dharmarth Foundation (RKDF) University, Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bypass Road, Bhauri, Bhopal, 462 030, MP, India.
| |
Collapse
|
8
|
Li J, Li Y, Zhou L, Li C, Liu J, Liu D, Fu Y, Wang Y, Tang J, Zhou L, Tan S, Wang L. The human microbiome and benign prostatic hyperplasia: Current understandings and clinical implications. Microbiol Res 2024; 281:127596. [PMID: 38215640 DOI: 10.1016/j.micres.2023.127596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024]
Abstract
The research of the human microbiome in the preceding decade has yielded novel perspectives on human health and diseases. Benign prostatic hyperplasia (BPH) is a common disease in middle-aged and elderly males, which negatively affects the life quality. Existing evidence has indicated that the human microbiome, including urinary, intra-prostate, gut, oral and blood microbiome may exert a significant impact on the natural progression of BPH. The dysbiosis of the microbiome may induce inflammation at either a local or systemic level, thereby affecting the BPH. Moreover, metabolic syndrome (MetS) caused by the microbiome can also be involved in the development of BPH. Additionally, alterations in the microbiome composition during the senility process may serve as another cause of the BPH. Here, we summarize the influence of human microbiome on BPH and explore how the microbiome is linked to BPH through inflammation, MetS, and senility. In addition, we propose promising areas of investigation and discuss the implications for advancing therapeutic approaches.
Collapse
Affiliation(s)
- Jiaren Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Youyou Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Liang Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Cheng Li
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Dingwen Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yunlong Fu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Yichuan Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Lei Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Shuo Tan
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
9
|
Zhai T, Ren W, Ji X, Wang Y, Chen H, Jin Y, Liang Q, Zhang N, Huang J. Distinct compositions and functions of circulating microbial DNA in the peripheral blood compared to fecal microbial DNA in healthy individuals. mSystems 2024; 9:e0000824. [PMID: 38426796 PMCID: PMC10949464 DOI: 10.1128/msystems.00008-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The crucial function of circulating microbial DNA (cmDNA) in peripheral blood is gaining recognition because of its importance in normal physiology and immunity in healthy individuals. Evidence suggests that cmDNA in peripheral blood is derived from highly abundant, translocating gut microbes. However, the associations with and differences between cmDNA in peripheral blood and the gut microbiome remain unclear. We collected blood, urine, and fecal samples from volunteers to compare their microbial information via 16S rDNA sequencing. The results revealed that, compared with gut microbial DNA, cmDNA in peripheral blood was associated with reduced diversity and a distinct microbiota composition. The cmDNA in the blood reflects the biochemical processes of microorganisms, including synthesis, energy conversion, degradation, and adaptability, surpassing that of fecal samples. Interestingly, cmDNA in blood showed a limited presence of DNA from anaerobes and gram-positive bacteria, which contrast with the trend observed in fecal samples. Furthermore, analysis of cmDNA revealed traits associated with mobile elements and potential pathologies, among others, which were minimal in stool samples. Notably, cmDNA analysis indicated similarities between the microbial functions and phenotypes in blood and urine samples, although greater diversity was observed in urine samples. Source Tracker analysis suggests that gut microbes might not be the main source of blood cmDNA, or a selective mechanism allows only certain microbial DNA into the bloodstream. In conclusion, our study highlights the composition and potential functions associated with cmDNA in peripheral blood, emphasizing its selective presence; however, further research is required to elucidate the mechanisms involved.IMPORTANCEOur research provides novel insights into the unique characteristics and potential functional implications of circulating microbial DNA (cmDNA) in peripheral blood. Unlike other studies that analyzed sequencing data from fecal or blood microbiota in different study cohorts, our comparative analysis of cmDNA from blood, urine, and fecal samples from the same group of volunteers revealed a distinct blood-specific cmDNA composition. We discovered a decreased diversity of microbial DNA in blood samples compared to fecal samples as well as an increased presence of biochemical processes microbial DNA in blood. Notably, we add to the existing knowledge by documenting a reduced abundance of anaerobes and gram-positive bacteria in blood compared to fecal samples according to the analysis of cmDNA and gut microbial DNA, respectively. This observation suggested that a potential selective barrier or screening mechanism might filter microbial DNA molecules, indicating potential selectivity in the translocation process which contrasts with the traditional view that cmDNA primarily originates from random translocation from the gut and other regions. By highlighting these differences, our findings prompt a reconsideration of the origin and role of cmDNA in blood circulation and suggest that selective processes involving more complex biological mechanisms may be involved.
Collapse
Affiliation(s)
- Taiyu Zhai
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Wenbo Ren
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Xufeng Ji
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yifei Wang
- College of Medical Technology, Beihua University, Jilin, China
| | - Haizhen Chen
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yuting Jin
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Qiao Liang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Nan Zhang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Jing Huang
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Sciarra F, Franceschini E, Campolo F, Venneri MA. The Diagnostic Potential of the Human Blood Microbiome: Are We Dreaming or Awake? Int J Mol Sci 2023; 24:10422. [PMID: 37445600 DOI: 10.3390/ijms241310422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Human blood has historically been considered a sterile environment. Recently, a thriving microbiome dominated by Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes phyla was detected in healthy blood. The localization of these microbes is restricted to some blood cell populations, particularly the peripheral blood mononuclear cells and erythrocytes. It was hypothesized that the blood microbiome originates from the skin-oral-gut axis. In addition, many studies have evaluated the potential of blood microbiome dysbiosis as a prognostic marker in cardiovascular diseases, cirrhosis, severe liver fibrosis, severe acute pancreatitis, type 2 diabetes, and chronic kidney diseases. The present review aims to summarize current findings and most recent evidence in the field.
Collapse
Affiliation(s)
- Francesca Sciarra
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Edoardo Franceschini
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Ullah Goraya M, Li R, Gu L, Deng H, Wang G. Blood Stream Microbiota Dysbiosis Establishing New Research Standards in Cardio-Metabolic Diseases, A Meta-Analysis Study. Microorganisms 2023; 11:microorganisms11030777. [PMID: 36985350 PMCID: PMC10052040 DOI: 10.3390/microorganisms11030777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
AIMS Scientists have recently discovered a link between the circulating microbiome and homeostasis, as well as the pathogenesis of a number of metabolic diseases. It has been demonstrated that low-grade chronic inflammation is one of the primary mechanisms that has long been implicated in the risk of cardio-metabolic disease (CMDs) and its progression. Currently, the dysbiosis of circulating bacteria is considered as a key regulator for chronic inflammation in CMDs, which is why we have conducted this systemic review focused on circulating bacterial dysbiosis. METHODS A systemic review of clinical and research-based studies was conducted via PubMed, Scopus, Medline, and Web of Science. Literature was considered for risk of bias and patterns of intervention effects. A randomized effect model was used to evaluate the dysbiosis of circulating microbiota and clinical outcomes. We conducted a meta-analysis considering the circulating bacteria in both healthy people and people with cardio-metabolic disorders, in reports published mainly from 2008 to 2022, according to the PRISMA guidelines. RESULTS We searched 627 studies and, after completing the risk of bias and selection, 31 studies comprising of 11,132 human samples were considered. This meta-analysis found that dysbiosis of phyla Proteobacteria, Firmicutes, and Bacteroidetes was associated with metabolic diseases. CONCLUSIONS In most instances, metabolic diseases are linked to higher diversity and elevated bacterial DNA levels. Bacteroides abundance was higher in healthy people than with metabolic disorders. However, more rigorous studies are required to determine the role of bacterial dysbiosis in cardio-metabolic diseases. Understanding the relationship between dysbiosis and cardio-metabolic diseases, we can use the bacteria as therapeutics for the reversal of dysbiosis and targets for therapeutics use in cardio-metabolic diseases. In the future, circulating bacterial signatures can be used as biomarkers for the early detection of metabolic diseases.
Collapse
Affiliation(s)
| | - Rui Li
- Correspondence: (R.L.); (G.W.)
| | | | | | | |
Collapse
|
12
|
Tsafarova B, Hodzhev Y, Yordanov G, Tolchkov V, Kalfin R, Panaiotov S. Morphology of blood microbiota in healthy individuals assessed by light and electron microscopy. Front Cell Infect Microbiol 2023; 12:1091341. [PMID: 36741978 PMCID: PMC9889553 DOI: 10.3389/fcimb.2022.1091341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction The blood microbiome is still an enigma. The existence of blood microbiota in clinically healthy individuals was proven during the last 50 years. Indirect evidence from radiometric analysis suggested the existence of living microbial forms in erythrocytes. Recently targeted nucleic acid sequencing demonstrated rich microbial biodiversity in the blood of clinically healthy individuals. The morphology and proliferation cycle of blood microbiota in peripheral blood mononuclear cells (PBMC) isolated from freshly drawn and cultured whole blood are obscure. Methods To study the life cycle of blood microbiota we focused on light, and electron microscopy analysis. Peripheral blood mononuclear cells isolated from freshly drawn blood and stress-cultured lysed whole blood at 43°C in presence of vitamin K from healthy individuals were studied. Results Here, we demonstrated that free circulating microbiota in the PMBC fraction possess a well-defined cell wall and proliferate by budding or through a mechanism similar to the extrusion of progeny bodies. By contrast, stress-cultured lysed whole blood microbiota proliferated as cell-wall deficient microbiota by forming electron-dense or electron-transparent bodies. The electron-dense bodies proliferated by fission or produce in chains Gram-negatively stained progeny cells or enlarged and burst to release progeny cells of 180 - 200 nm size. On the other hand, electron-transparent bodies enlarged and emitted progeny cells through the membrane. A novel proliferation mechanism of blood microbiota called by us "a cell within a cell" was observed. It combines proliferation of progeny cells within a progeny cell which is growing within the "mother" cell. Discussion The rich biodiversity of eukaryotic and prokaryotic microbiota identified in blood by next-generation sequencing technologies and our microscopy results suggest different proliferation mechanisms in whole and cultured blood. Our documented evidence and conclusions provide a more comprehensive view of the existence of normal blood microbiota in healthy individuals.
Collapse
Affiliation(s)
- Borislava Tsafarova
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Yordan Hodzhev
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Georgi Yordanov
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Vladimir Tolchkov
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Health Care, South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria
| | - Stefan Panaiotov
- Department of Microbiology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| |
Collapse
|