1
|
Wu J, Yan Y, Chen J, Li J, Li G, Wu G, Wang B, Zheng G, Yang Y, Du Y, Lian L. Brown-shell eggs shows high incidence of blood and meat spots accompanied by unique microbial distribution patterns. Front Nutr 2025; 12:1561194. [PMID: 40201584 PMCID: PMC11975598 DOI: 10.3389/fnut.2025.1561194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction The blood and meat spots in eggs are recognized as defects for egg quality. The frequency of blood and meat spots in brown-shell eggs is much higher than that in white-shell eggs in previous studies. However, the actual occurrence frequency and their effects on the microbial composition in eggs remain poorly understood. Methods In this study, we examined the frequency of blood and meat spots in brown-shell and white-shell eggs, respectively, from Rhode Island Red and White Leghorn chickens at seven ages. Results The results showed that blood and meat spots in brown-shell eggs exhibit much higher average frequency (63.99%) than that in white-shell eggs (1.37%). Furthermore, we analyzed the relationship between the presence of blood and meat spots and the microbial community distribution in the egg albumen and yolk. Briefly, we selected brown-shell eggs (n = 112) from Rhode Island Red, among which 51 eggs showing blood/meat spots were classified as RIR_CASE, and 61 normal eggs without blood/meat spot were classified as RIR_CON. Additional white-eggshell eggs (n = 124) without blood/meat spots from White Leghorn were selected as WL_CON. 16S rRNA sequencing was performed in both egg white and yolk. The results indicated that neither egg white nor yolk is sterile, with Proteobacteria identified as the dominant bacterial phyla. The microbial alpha diversity in both egg white and yolk of RIR_CASE was significantly lower compared to RIR_CON and WL_CON. Beta diversity analysis showed that the Weighted UniFrac Distance between RIR_CASE and RIR_CON in the egg yolk group was significantly larger than the distance between WL_CON and RIR_CON. It suggested that the difference of microbial diversity was mainly caused by blood and meat spots other than by chicken breeds. LEfSe analysis identified eight microbial taxa closely linked to the presence of blood and meat spots in egg white or yolk. Moreover, through the combination of random forest analysis, we identified the unique microbial biomarkers Comamonas_F and Chryseobacterium in the egg white of the RIR_CASE group. Discussion Our study indicates that eggs with blood and meat spots occur at a higher frequency in brown-shell chickens and are accompanied by a distinct microbial community distribution.
Collapse
Affiliation(s)
- Junfeng Wu
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yiyuan Yan
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Jiahua Chen
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Junying Li
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Guangqi Li
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Guiqin Wu
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Bin Wang
- Beijing Engineering Research Center of Layer, Beijing, China
| | - Gang Zheng
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yuqin Yang
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Yushuang Du
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| | - Ling Lian
- State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Yadav KS, Datkhile K, Pawar S, Patil S. An Overview of the Genetic Mechanisms of Colistin-Resistance in Bacterial Pathogens: An Indian Perspective. Cureus 2025; 17:e78800. [PMID: 40078264 PMCID: PMC11902915 DOI: 10.7759/cureus.78800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 03/14/2025] Open
Abstract
Colistin resistance in bacteria is a growing global issue, given its role as a critical last-resort antibiotic, particularly for treating Gram-negative bacterial infections. Pathogens adopt multiple resistance mechanisms, mediated either by plasmids or chromosomal changes. Some of the most frequently observed strategies include the occurrence of plasmid-borne mobile colistin resistance (mcr) genes, enhanced efflux pump activity, mutations in the regulatory systems, and alterations in the lipid A structure. This article provides an overview of the studies investigating the genetic mechanisms underlying colistin resistance in nosocomial Gram-negative bacteria from India. A total of 37 studies were identified through online searches across various databases, including PubMed, ScienceDirect, and Web of Science. These studies were reviewed to examine bacterial species and their mechanisms of colistin resistance. Over 26 (70.27%) studies were focused on Klebsiella pneumoniae. The most commonly reported mechanism of colistin resistance involved mutations in the two-component systems pmrAB and phoPQ. Plasmid-mediated colistin-resistant mcr genes were identified in 22 studies (18.18%). Four studies reported the overexpression of efflux pump genes as a mechanism of colistin resistance. This article provides a comprehensive summary of these studies, emphasizing the presence of diverse resistance mechanisms across various pathogens. It underscores the necessity for future genomic research on a broader range of pathogens to investigate the prevalence of different mechanisms of colistin resistance in the various regions of India.
Collapse
Affiliation(s)
- Kajal S Yadav
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Kailas Datkhile
- Department of Allied Sciences, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satyajeet Pawar
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Satish Patil
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
3
|
Lin L, Tao M, He WM, Wu QH, Huang HK, Murero AK, Shao XL, Wang LM, Qian GL. Identification of non-canonical antagonistic bacteria via interspecies contact-dependent killing. PEST MANAGEMENT SCIENCE 2024; 80:3997-4005. [PMID: 38527976 DOI: 10.1002/ps.8103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Canonical biocontrol bacteria were considered to inhibit pathogenic bacteria mainly by secreting antibiotic metabolites or enzymes. Recent studies revealed that some biocontrol bacteria can inhibit pathogenic bacteria through contact-dependent killing (CDK) mediated by contact-dependent secretion systems. The CDK was independent of antibiotic metabolites and often ignored in normal biocontrol activity assay. RESULTS In this study, we aimed to use a pathogen enrichment strategy to isolate non-canonical bacteria with CDK ability. Rhizosphere soil samples from Chinese cabbage showing soft rot symptom were collected and Pectobacterium carotovorum subsp. carotovorum (Pcc), the pathogen of cabbage soft rot, were added into these samples to enrich bacteria which attached on Pcc cells. By co-culture with Pcc, four bacteria strains (named as PcE1, PcE8, PcE12 and PcE13) showing antibacterial activity were isolated from Chinese cabbage rhizosphere. These four bacteria strains showed CDK abilities to different pathogenic bacteria of horticultural plants. Among them, PcE1 was identified as Chryseobacterium cucumeris. Genome sequencing showed that PcE1 genome encoded a type VI secretion system (T6SS) gene cluster. By heterologous expression, four predicted T6SS effectors of PcE1 showed antibacterial activity to Escherichia coli. CONCLUSION Overall, this study isolated four bacteria strains with CDK activity to various horticultural plant pathogens, and revealed possible involvement of T6SS of Chryseobacterium cucumeris in antibacterial activity. These results provide valuable insight for potential application of CDK activity in biocontrol bacteria. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Long Lin
- College of Plant Protection (State Key Laboratory of Biological Interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Min Tao
- College of Plant Protection (State Key Laboratory of Biological Interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Wei-Mei He
- College of Plant Protection (State Key Laboratory of Biological Interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Qian-Hua Wu
- College of Plant Protection (State Key Laboratory of Biological Interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Hao-Kai Huang
- College of Plant Protection (State Key Laboratory of Biological Interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Aprodisia Kavutu Murero
- College of Plant Protection (State Key Laboratory of Biological Interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Xiao-Long Shao
- College of Plant Protection (State Key Laboratory of Biological Interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Li-Min Wang
- College of Plant Protection (State Key Laboratory of Biological Interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| | - Guo-Liang Qian
- College of Plant Protection (State Key Laboratory of Biological Interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, P. R. China
| |
Collapse
|
4
|
Tian Y, Liu Y, Uwaremwe C, Zhao X, Yue L, Zhou Q, Wang Y, Tran LSP, Li W, Chen G, Sha Y, Wang R. Characterization of three new plant growth-promoting microbes and effects of the interkingdom interactions on plant growth and disease prevention. PLANT CELL REPORTS 2023; 42:1757-1776. [PMID: 37674059 DOI: 10.1007/s00299-023-03060-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023]
Abstract
KEY MESSAGE The novel interkingdom PGPM consortia enhanced the ability of plant growth promotion and disease resistance, which would be beneficial to improve plant growth in sustainable agriculture through engineering microbiome. Plant growth-promoting microbes (PGPMs) play important roles in promoting plant growth and bio-controlling of pathogens. Much information reveals that the plant growth-promoting ability of individual PGPM affects plant growth. However, the effects of the PGPM consortia properties on plant growth remain largely unexplored. Here, we characterized three new PGPM strains including Rhodotorula graminis JJ10.1 (termed as J), Pseudomonas psychrotolerans YY7 (termed as Y) and P. chlororaphis T8 (termed as T), and assessed their effects in combination with Bacillus amyloliquefaciens FZB42 (termed as F) on plant growth promotion and disease prevention in Arabidopsis thaliana and tomato (Solanum lycopersicum) plants by investigating morphological changes, whole-genome sequencing and plant growth promoting (PGP) characterization. Results revealed that the three new strains R. graminis JJ10.1, P. psychrotolerans YY7 and P. chlororaphis T8 had the potential for being combined with B. amyloliquefaciens FZB42 to form interkingdom PGPM consortia. The combinations of R. graminis JJ10.1, B. amyloliquefaciens FZB42, and P. psychrotolerans YY7, i. e. JF and JYF, exhibited the strongest ability of synergetic biofilm production. Furthermore, the growth-promotion abilities of the consortia were significantly enhanced compared with those of individual strains under both inoculation and volatile organic compounds (VOCs) treatment. Importantly, the consortia showed stronger abilities of in planta disease prevention than individual strains. Findings of our study may provide future guidance for engineering the minimal microbiome communities to improve plant growth and/or disease resistance in sustainable agriculture.
Collapse
Affiliation(s)
- Yuan Tian
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yang Liu
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Constantine Uwaremwe
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xia Zhao
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liang Yue
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qin Zhou
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yun Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Weiqiang Li
- Jilin Da'an Agro-Ecosystem National Observation Research Station, Changchun Jingyuetan Remote Sensing Experiment Station, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Science, Changchun, 130102, People's Republic of China
| | - Gaofeng Chen
- Gansu Shangnong Biotechnology Co. Ltd, Baiyin, 730900, People's Republic of China
| | - Yuexia Sha
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, People's Republic of China
| | - Ruoyu Wang
- Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|