1
|
Fritsch VN, Hensel M. Experimental Approaches to Visualize Effector Protein Translocation During Host-Pathogen Interactions. Bioessays 2025; 47:e202400188. [PMID: 40078034 PMCID: PMC11931682 DOI: 10.1002/bies.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
Bacterial pathogens deliver effector proteins into host cells by deploying sophisticated secretion systems. This effector translocation during host-pathogen interactions is a prerequisite for the manipulation of host cells and organisms and is important for pathogenesis. Analyses of dynamics and kinetics of translocation, subcellular localization, and cellular targets of effector proteins lead to understanding the mode of action and function of effector proteins in host-pathogen interplay. This review provides an overview of biochemical and genetic tools that have been developed to study protein effector translocation qualitatively or quantitatively. After introducing the challenges of analyses of effector translocation during host-pathogen interaction, we describe various methods ranging from static visualization in fixed cells to dynamic live-cell imaging of effector protein translocation. We show the main findings enabled by the approaches, emphasize the advantages and limitations of the methods, describe recent approaches that allow real-time tracking of effector proteins in living cells on a single molecule level, and highlight open questions in the field to be addressed by application of new methods.
Collapse
Affiliation(s)
| | - Michael Hensel
- Abt. MikrobiologieUniversität OsnabrückOsnabrückGermany
- Center for Cellular Nanoananalytics (CellNanOs)Universität OsnabrückOsnabrückGermany
| |
Collapse
|
2
|
Xie J, Xiang J, Shen Y, Shao S. Mechanistic Insights into the Tools for Intracellular Protein Delivery. CHEM & BIO ENGINEERING 2025; 2:132-155. [PMID: 40171130 PMCID: PMC11955855 DOI: 10.1021/cbe.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 04/03/2025]
Abstract
Proteins are an important therapeutic modality in modern medicine. However, their inherent inability to traverse cell membranes essentially limits their application to extracellular targets. Recent advances in intracellular protein delivery have enabled access to traditionally "undruggable" intracellular targets and paved the way to precisely modulate cellular functions. This Review provides a comprehensive examination of the key mechanisms and emerging technologies that facilitate the transport of functional proteins across cellular membranes. Delivery methods are categorized into physical, chemical, and biological approaches, each with distinct advantages and limitations. Physical methods enable direct protein entry but often pose challenges related to invasiveness and technical complexity. Chemical strategies offer customizable solutions with enhanced control over cellular targeting and uptake, yet may face issues with cytotoxicity and scalability. Biological approaches leverage naturally occurring processes to achieve efficient intracellular transport, though regulatory and production consistency remain hurdles. By highlighting recent advancements, challenges, and opportunities within each approach, this review underscores the potential of intracellular protein delivery technologies to unlock new therapeutic pathways and transform drug development paradigms.
Collapse
Affiliation(s)
- Jingwen Xie
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiajia Xiang
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Youqing Shen
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Shiqun Shao
- Zhejiang
Key Laboratory of Smart Biomaterials and Center for Bionanoengineering,
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
3
|
Waksman G. Molecular basis of conjugation-mediated DNA transfer by gram-negative bacteria. Curr Opin Struct Biol 2025; 90:102978. [PMID: 39823762 DOI: 10.1016/j.sbi.2024.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
Bacterial conjugation is the unidirectional transfer of DNA (often plasmids, but also other mobile genetic elements, or even entire genomes), from a donor cell to a recipient cell. In Gram-negative bacteria, it requires the formation of three complexes in the donor cell: i-a large, double-membrane-embedded transport machinery called the Type IV Secretion System (T4SS), ii-a long extracellular tube, the conjugative pilus, and iii-a DNA-processing machinery termed the relaxosome. While knowledge has expanded regarding molecular events in the donor cell, very little is known about the machinery involved in DNA transfer into the recipient cell. Here, focusing on systems principally involved in DNA transfer, we provide an update on progress made on various mechanistic aspects of conjugation.
Collapse
Affiliation(s)
- Gabriel Waksman
- Institute of Structural and Molecular Biology, School of Natural Sciences, Birkbeck College, Malet Street, London, WC1E 7HX, United Kingdom; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, WC1E 6BT, United Kingdom.
| |
Collapse
|
4
|
Guzmán-Herrador DL, Fernández-Gómez A, Depardieu F, Bikard D, Llosa M. Delivery of functional Cas:DNA nucleoprotein complexes into recipient bacteria through a type IV secretion system. Proc Natl Acad Sci U S A 2024; 121:e2408509121. [PMID: 39413137 PMCID: PMC11513951 DOI: 10.1073/pnas.2408509121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
CRISPR-associated (Cas) endonucleases and their derivatives are widespread tools for the targeted genetic modification of both prokaryotic and eukaryotic genomes. A critical step of all CRISPR-Cas technologies is the delivery of the Cas endonuclease to the target cell. Here, we investigate the possibility of using bacterial conjugation to translocate Cas proteins into recipient bacteria. Conjugative relaxases are translocated through a type IV secretion system into the recipient cell, covalently attached to the transferred DNA strand. We fused relaxase R388-TrwC with the endonuclease Cas12a and confirmed that it can be transported through a T4SS. The fusion protein maintained its activity upon translocation by conjugation into the recipient cell, as evidenced by the induction of the SOS signal resulting from DNA breaks produced by the endonuclease in the recipient cell, and the detection of mutations at the target position. We further show how a template DNA provided on the transferred DNA can be used to introduce specific mutations. The guide RNA can also be encoded by the transferred DNA, enabling its production in the recipient cells where it can form a complex with the Cas nuclease transferred as a protein. This self-contained setup enables to target wild-type bacterial cells. Finally, we extended this strategy to the delivery of relaxases fused to base editors. Using TrwC and MobA relaxases as drivers, we achieved precise editing of transconjugants. Thus, conjugation provides a delivery system for Cas-derived editing tools, bypassing the need to deliver and express a cas gene in the target cells.
Collapse
Affiliation(s)
- Dolores L. Guzmán-Herrador
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Santander39011, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - Consejo Superior de Investigaciones Científicas – Sociedad para el Desarrollo de Cantabria (UC–CSIC–SODERCAN), Santander39011, Spain
| | - Andrea Fernández-Gómez
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Santander39011, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - Consejo Superior de Investigaciones Científicas – Sociedad para el Desarrollo de Cantabria (UC–CSIC–SODERCAN), Santander39011, Spain
| | - Florence Depardieu
- Institut Pasteur, Université Paris Cité, Microbiology Department, Synthetic Biology, Paris75015, France
| | - David Bikard
- Institut Pasteur, Université Paris Cité, Microbiology Department, Synthetic Biology, Paris75015, France
| | - Matxalen Llosa
- Departamento de Biología Molecular, Universidad de Cantabria (UC), Santander39011, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria - Consejo Superior de Investigaciones Científicas – Sociedad para el Desarrollo de Cantabria (UC–CSIC–SODERCAN), Santander39011, Spain
| |
Collapse
|
5
|
Jiménez JD, Godoy MS, Del Cerro C, Prieto MA. Hints from nature for a PHA circular economy: Carbon synthesis and sharing by Pseudomonas solani GK13. N Biotechnol 2024; 84:9-23. [PMID: 39245322 DOI: 10.1016/j.nbt.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are a well-known group of biodegradable and biocompatible bioplastics that are synthesised and stored by microorganisms as carbon and energy reservoirs. Extracellular PHA depolymerases (ePhaZs), secreted by a limited range of microorganisms, are the main hydrolytic enzymes responsible for their environmental degradation. Pseudomonas sp. GK13, initially identified as P. fluorescens GK13, produces PHA and a prototypic ePhaZ that specifically degrades mcl-PHA. In this study, a comprehensive characterization of strain GK13 was performed. The whole genomic sequence of GK13 was consolidated into one complete chromosome, leading to its reclassification as P. solani GK13. We conducted a detailed in silico examination of the bacteria genomic sequence, specifically targeting PHA metabolic functions. From the different growth conditions explored, PHA accumulation occurred only under carbon/nitrogen (C/N) imbalance, whereas ePhaZ production was induced even at balanced C/N ratios in mineral media. We extend our study to other bacteria belonging to the Pseudomonas genus revealing that the ePhaZ production capacity is closely associated with mcl-PHA synthesis capacity, as also suggested by metagenomic samples. This finding suggests that these types of microorganisms could contribute to the carbon economy of the microbial community, by storing PHA in carbon-rich times, and sharing it with the rest of the population during times of carbon scarcity through PHA hydrolysis. The conclusion pointed that carbon cycle metabolism performed by P. solani GK13 may contribute to the environmental circular economy at a microscopic scale.
Collapse
Affiliation(s)
- José D Jiménez
- Polymer Biotechnology Lab, Biological Research Center Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain
| | - Manuel S Godoy
- Polymer Biotechnology Lab, Biological Research Center Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain.
| | - Carlos Del Cerro
- Environmental Microbiology Lab, Biological Research Center Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Polymer Biotechnology Lab, Biological Research Center Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-CSIC (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
6
|
Rostovsky I, Wieler U, Kuzmina A, Taube R, Sal-Man N. Secretion of functional interferon by the type 3 secretion system of enteropathogenic Escherichia coli. Microb Cell Fact 2024; 23:163. [PMID: 38824527 PMCID: PMC11144349 DOI: 10.1186/s12934-024-02397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Type I interferons (IFN-I)-a group of cytokines with immunomodulatory, antiproliferative, and antiviral properties-are widely used as therapeutics for various cancers and viral diseases. Since IFNs are proteins, they are highly susceptible to degradation by proteases and by hydrolysis in the strong acid environment of the stomach, and they are therefore administered parenterally. In this study, we examined whether the intestinal bacterium, enteropathogenic Escherichia coli (EPEC), can be exploited for oral delivery of IFN-Is. EPEC survives the harsh conditions of the stomach and, upon reaching the small intestine, expresses a type III secretion system (T3SS) that is used to translocate effector proteins across the bacterial envelope into the eukaryotic host cells. RESULTS In this study, we developed an attenuated EPEC strain that cannot colonize the host but can secrete functional human IFNα2 variant through the T3SS. We found that this bacteria-secreted IFN exhibited antiproliferative and antiviral activities similar to commercially available IFN. CONCLUSION These findings present a potential novel approach for the oral delivery of IFN via secreting bacteria.
Collapse
Affiliation(s)
- Irina Rostovsky
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Uri Wieler
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Alona Kuzmina
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
7
|
Oka GU, Souza DP, Sgro GG, Guzzo CR, Dunger G, Farah CS. Xanthomonas immunity proteins protect against the cis-toxic effects of their cognate T4SS effectors. EMBO Rep 2024; 25:1436-1452. [PMID: 38332152 PMCID: PMC10933484 DOI: 10.1038/s44319-024-00060-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024] Open
Abstract
Many bacteria kill rival species by translocating toxic effectors into target cells. Effectors are often encoded along with cognate immunity proteins that could (i) protect against "friendly-fire" (trans-intoxication) from neighboring sister cells and/or (ii) protect against internal cis-intoxication (suicide). Here, we distinguish between these two mechanisms in the case of the bactericidal Xanthomonas citri Type IV Secretion System (X-T4SS). We use a set of X. citri mutants lacking multiple effector/immunity protein (X-Tfe/X-Tfi) pairs to show that X-Tfis are not absolutely required to protect against trans-intoxication by wild-type cells. Our investigation then focused on the in vivo function of the lysozyme-like effector X-TfeXAC2609 and its cognate immunity protein X-TfiXAC2610. In the absence of X-TfiXAC2610, we observe X-TfeXAC2609-dependent and X-T4SS-independent accumulation of damage in the X. citri cell envelope, cell death, and inhibition of biofilm formation. While immunity proteins in other systems have been shown to protect against attacks by sister cells (trans-intoxication), this is an example of an antibacterial secretion system in which the immunity proteins are dedicated to protecting cells against cis-intoxication.
Collapse
Affiliation(s)
- Gabriel U Oka
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Structure and Function of Bacterial Nanomachines, Institut Européen de Chimie et Biologie-CNRS, UMR 5234 Microbiologie Fondamentale et Pathogénicité University of Bordeaux, Pessac, France
| | - Diorge P Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Germán G Sgro
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Cristiane R Guzzo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - German Dunger
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto de Ciencias Agropecuarias del Litoral (ICiAgro Litoral), Universidad Nacional del Litoral, CONICET, Facultad de Ciencias Agrarias, Esperanza, Argentina
| | - Chuck S Farah
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Purkait D, Ilyas M, Atmakuri K. Protein-Protein Interactions: Bimolecular Fluorescence Complementation and Cytology Two Hybrid. Methods Mol Biol 2024; 2715:247-257. [PMID: 37930533 DOI: 10.1007/978-1-0716-3445-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Identifying protein-protein interactions between machine components of bacterial secretion systems and their cognate substrates is central to delineating how the machines operate to translocate their substrates. Further, establishing which among the machine components and their substrates interact with each other facilitates (i) advancement in our understanding of the architecture and assembly of the machines, (ii) understanding the substrates' translocation routes and mechanisms, and (iii) how the machines and the substrates talk to each other. Currently, though diverse biochemical methods exist in identifying direct and indirect protein-protein interactions, they primarily remain in vitro and can be quite labor intensive. They also may capture/exhibit false-positive interactions because of barrier breakdowns as part of methodology. Thus, adopting novel genetic approaches to help visualize the same in vivo can yield quick, advantageous, reliable, and informative protein-protein interactions data. Here, we describe the easily adoptable bimolecular fluorescence complementation and cytology-based two-hybrid assays to understand the bacterial secretions systems.
Collapse
Affiliation(s)
- Dyuti Purkait
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Mohd Ilyas
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
9
|
Kravtsov D, Gryadunov D, Shaskolskiy B. Gonococcal Genetic Island in the Global Neisseria gonorrhoeae Population: A Model of Genetic Diversity and Association with Resistance to Antimicrobials. Microorganisms 2023; 11:1547. [PMID: 37375049 DOI: 10.3390/microorganisms11061547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this work was to study the genetic diversity of the gonococcal genetic island (GGI) responsible for the type IV secretion system (T4SS) and the association of a functionally active GGI with antimicrobial resistance. An analysis of the GGI in a sample of 14,763 genomes of N. gonorrhoeae isolates from the Pathogenwatch database collected in 1996-2019 from 68 countries was performed. A model of GGI's genetic diversity that divides the global gonococcal population into fifty-one GGI clusters and three GGI superclusters based on the allele type of the traG gene and substitutions of the atlA and ych genes for eppA and ych1 has been proposed, reflecting differences among isolates in the T4SS functionality. The NG-MAST and MLST typing schemes (with accuracies of 91% and 83%, respectively) allowed the determination of both the presence of a GGI and the GGI cluster and, correspondingly, the structure of the GGI and the ability to secrete DNA. A statistically significant difference in the proportion of N. gonorrhoeae isolates resistant to ciprofloxacin, cefixime, tetracycline, and penicillin was found when comparing populations with a functional and a non-functional GGI. The presence of a functional GGI did not affect the proportion of azithromycin-resistant isolates.
Collapse
Affiliation(s)
- Dmitry Kravtsov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry Gryadunov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Boris Shaskolskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|