1
|
Hwang S, Lee NY, Nam E, Kim YK, Kim SW, Chang HH, Kim Y, Bae S, Jeong J, Shin JH, Jang G, Lee C, Kwon KT. Effect of Regdanvimab on Mortality in Patients Infected with SARS-CoV-2 Delta Variants: A Propensity Score-Matched Cohort Study. Infect Dis Ther 2024; 13:1037-1050. [PMID: 38607524 PMCID: PMC11098974 DOI: 10.1007/s40121-024-00971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Regdanvimab, a monoclonal antibody pharmaceutical, is the first Korean drug approved for treating coronavirus disease 2019 (COVID-19). We analyzed the therapeutic efficacy of regdanvimab in patients with the COVID-19 delta variant infection. METHODS We retrospectively reviewed the electronic medical records of patients hospitalized at two Korean tertiary COVID-19 hospitals with COVID-19 delta variant infection between May 26, 2021, and January 30, 2022. To analyze the therapeutic efficacy of regdanvimab, the patients were divided into regdanvimab and non-regdanvimab groups and were 1:1 propensity-score (PS)-matched on age, severity at admission, and COVID-19 vaccination history. RESULTS Of 492 patients, 262 (53.3%) and 230 (46.7%) were in the regdanvimab and non-regdanvimab groups, respectively. After PS matching the groups on age, severity at admission, and COVID-19 vaccination history, each group comprised 189 patients. The 30-day hospital mortality rates (0.0% vs. 1.6%, p = 0.030), proportions of patients with exacerbated conditions to severe/critical/died (9.5% vs. 16.4%, p = 0.047), proportions who received oxygen therapy because of pneumonia exacerbation (7.4% vs. 16.4%, p = 0.007), and proportions with a daily National Early Warning Score ≥ 5 from hospital day 2 were significantly lower in the regdanvimab group. CONCLUSIONS We showed that regdanvimab reduced the exacerbation rates of conditions and mortality in patients with the COVID-19 delta variant infection. Thus, it is recommended to streamline the drug approval system during epidemics of new variant viruses to improve the availability and usage of therapeutics for patients. To facilitate this, relevant institutional support is required.
Collapse
Affiliation(s)
- Soyoon Hwang
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu, Republic of Korea
| | - Nan Young Lee
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eunkyung Nam
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu, Republic of Korea
| | - Yu Kyung Kim
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin-Woo Kim
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hyun-Ha Chang
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yoonjung Kim
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Sohyun Bae
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Juhwan Jeong
- Division of Infectious Diseases, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jae-Ho Shin
- KNU NGS Core Facility, Kyungpook National University, Daegu, Republic of Korea
| | - Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, 501, Jinju-daero, Jinju, Gyeongsangnam-do, Republic of Korea
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, 501, Jinju-daero, Jinju, Gyeongsangnam-do, Republic of Korea.
| | - Ki Tae Kwon
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, 807, Hoguk-ro, Buk-gu, Daegu, Republic of Korea.
| |
Collapse
|
2
|
Qian J, Zhang S, Wang F, Li J, Zhang J. What makes SARS-CoV-2 unique? Focusing on the spike protein. Cell Biol Int 2024; 48:404-430. [PMID: 38263600 DOI: 10.1002/cbin.12130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) seriously threatens public health and safety. Genetic variants determine the expression of SARS-CoV-2 structural proteins, which are associated with enhanced transmissibility, enhanced virulence, and immune escape. Vaccination is encouraged as a public health intervention, and different types of vaccines are used worldwide. However, new variants continue to emerge, especially the Omicron complex, and the neutralizing antibody responses are diminished significantly. In this review, we outlined the uniqueness of SARS-CoV-2 from three perspectives. First, we described the detailed structure of the spike (S) protein, which is highly susceptible to mutations and contributes to the distinct infection cycle of the virus. Second, we systematically summarized the immunoglobulin G epitopes of SARS-CoV-2 and highlighted the central role of the nonconserved regions of the S protein in adaptive immune escape. Third, we provided an overview of the vaccines targeting the S protein and discussed the impact of the nonconserved regions on vaccine effectiveness. The characterization and identification of the structure and genomic organization of SARS-CoV-2 will help elucidate its mechanisms of viral mutation and infection and provide a basis for the selection of optimal treatments. The leaps in advancements regarding improved diagnosis, targeted vaccines and therapeutic remedies provide sound evidence showing that scientific understanding, research, and technology evolved at the pace of the pandemic.
Collapse
Affiliation(s)
- Jingbo Qian
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shichang Zhang
- Department of Clinical Laboratory Medicine, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Fang Wang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, China
| | - Jiexin Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
3
|
Arevalo-Romero JA, Chingaté-López SM, Camacho BA, Alméciga-Díaz CJ, Ramirez-Segura CA. Next-generation treatments: Immunotherapy and advanced therapies for COVID-19. Heliyon 2024; 10:e26423. [PMID: 38434363 PMCID: PMC10907543 DOI: 10.1016/j.heliyon.2024.e26423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in 2019 following prior outbreaks of coronaviruses like SARS and MERS in recent decades, underscoring their high potential of infectivity in humans. Insights from previous outbreaks of SARS and MERS have played a significant role in developing effective strategies to mitigate the global impact of SARS-CoV-2. As of January 7, 2024, there have been 774,075,242 confirmed cases of COVID-19 worldwide. To date, 13.59 billion vaccine doses have been administered, and there have been 7,012,986 documented fatalities (https://www.who.int/) Despite significant progress in addressing the COVID-19 pandemic, the rapid evolution of SARS-CoV-2 challenges human defenses, presenting ongoing global challenges. The emergence of new SARS-CoV-2 lineages, shaped by mutation and recombination processes, has led to successive waves of infections. This scenario reveals the need for next-generation vaccines as a crucial requirement for ensuring ongoing protection against SARS-CoV-2. This demand calls for formulations that trigger a robust adaptive immune response without leading the acute inflammation linked with the infection. Key mutations detected in the Spike protein, a critical target for neutralizing antibodies and vaccine design -specifically within the Receptor Binding Domain region of Omicron variant lineages (B.1.1.529), currently dominant worldwide, have intensified concerns due to their association with immunity evasion from prior vaccinations and infections. As the world deals with this evolving threat, the narrative extends to the realm of emerging variants, each displaying new mutations with implications that remain largely misunderstood. Notably, the JN.1 Omicron lineage is gaining global prevalence, and early findings suggest it stands among the immune-evading variants, a characteristic attributed to its mutation L455S. Moreover, the detrimental consequences of the novel emergence of SARS-CoV-2 lineages bear a particularly critical impact on immunocompromised individuals and older adults. Immunocompromised individuals face challenges such as suboptimal responses to COVID-19 vaccines, rendering them more susceptible to severe disease. Similarly, older adults have an increased risk of severe disease and the presence of comorbid conditions, find themselves at a heightened vulnerability to develop COVID-19 disease. Thus, recognizing these intricate factors is crucial for effectively tailoring public health strategies to protect these vulnerable populations. In this context, this review aims to describe, analyze, and discuss the current progress of the next-generation treatments encompassing immunotherapeutic approaches and advanced therapies emerging as complements that will offer solutions to counter the disadvantages of the existing options. Preliminary outcomes show that these strategies target the virus and address the immunomodulatory responses associated with COVID-19. Furthermore, the capacity to promote tissue repair has been demonstrated, which can be particularly noteworthy for immunocompromised individuals who stand as vulnerable actors in the global landscape of coronavirus infections. The emerging next-generation treatments possess broader potential, offering protection against a wide range of variants and enhancing the ability to counter the impact of the constant evolution of the virus. Furthermore, advanced therapies are projected as potential treatment alternatives for managing Chronic Post-COVID-19 syndromeand addressing its associated long-term complications.
Collapse
Affiliation(s)
- Jenny Andrea Arevalo-Romero
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Sandra M. Chingaté-López
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Bernardo Armando Camacho
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| | - Carlos Javier Alméciga-Díaz
- Instituto de Errores Innatos del Metabolismo, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231, Bogotá, D.C., Colombia
| | - Cesar A. Ramirez-Segura
- Laboratorio de Investigación en Ingeniería Celular y Molecular, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, IDCBIS, 111611, Bogotá, DC, Colombia
| |
Collapse
|
4
|
Yang J, Kim HJ, Kim JW, Baek JY, Lee YJ, Choi JY, Kim SH, Jeong H, Chung EJ, Rhie GE, Park BK, Lee SY, Peck KR, Kim B, Ko JH. Evolution of neutralizing antibodies through vaccination and breakthrough infections in the era of COVID-19 endemicity. J Med Virol 2023; 95:e29285. [PMID: 38054545 DOI: 10.1002/jmv.29285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 12/07/2023]
Abstract
Despite a high vaccination rate, the COVID-19 pandemic continues with immune-evading Omicron variants. The success of additional antigenic stimulation through breakthrough infection (BI) and updated vaccination in overcoming antigenic imprinting needs to be determined. Participants in a long-term follow-up cohort of healthcare worker (HCW) vaccinee were categorized according to their infection/vaccination status. Anti-SARS-CoV-2 spike/nucleocapsid protein antibodies were measured, and plaque reduction neutralization tests (PRNTs) against wild-type (WT), BA.5, BN.1, and XBB.1.5 were conducted. The neutralization activity of intravenous immunoglobulin (IVIG) products was evaluated to assess the immune status of the general population. Ninety-five HCWs were evaluated and categorized into seven groups. The WT PRNT ND50 value was highest regardless of infection/vaccination status, and groups with recent antigenic stimulation showed high PRNT titers overall. Groups with double Omicron stimulation, either by BI plus BA.4/5 bivalent vaccination or repeated BI, exhibited significantly higher BA.5 and BN.1 PRNT to WT PRNT ratios than those with single Omicron stimulation. Overall group immunity was estimated to be boosted in January 2023, reflecting the effect of the BA.4/5 bivalent booster and additional BIs, but slightly declined in June 2023. A substantial increase in the antibody concentrations of IVIG products was noticed in 2022, and recently produced IVIG products exhibited a substantial level of cross-reactive neutralizing activity against emerging variants. Neutralizing activity against emerging variants could be enhanced by repeated antigenic stimulation via BI and/or updated vaccination. Overall group immunity was elevated accordingly, and IVIG products showed substantial activity against circulating strains.
Collapse
Affiliation(s)
- Jinyoung Yang
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hye-Jin Kim
- Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jun-Won Kim
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Jin Yang Baek
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Asia Pacific Foundation for Infectious Diseases (APFID), Seoul, Republic of Korea
| | - Young Jae Lee
- Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Ju-Yeon Choi
- Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Su-Hwan Kim
- Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Hyeonji Jeong
- Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Eun Joo Chung
- Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Gi-Eun Rhie
- Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Byoung Kwon Park
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - So-Young Lee
- Center for Emerging Virus Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Byoungguk Kim
- Center for Vaccine Research, National Institute of Infectious Diseases, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|