1
|
Wang X, Duan H, Lu F, Yu X, Xie M, Chen P, Zou J, Gao L, Cai Y, Chen R, Guo Y. Anatomizing causal relationships between gut microbiota, plasma metabolites, and epilepsy: A mendelian randomization study. Neurochem Int 2025; 183:105924. [PMID: 39743181 DOI: 10.1016/j.neuint.2024.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Epilepsy causes a heavy disease burden, and the gut microbiota (GM) influences the progression of epilepsy, while plasma metabolites directly or indirectly associated with GM may play a mediating role. However, the causal relationships between epilepsy, GM, and potential metabolite mediators are lack of investigation. METHODS Mendelian randomization (MR) analysis was applied to estimate the effects of GM and plasma metabolites on epilepsy. Genetic instruments were obtained from large-scale genome-wide meta-analysis of GM (n = 5959), plasma metabolites (n = 136,016), and epilepsy (Cases/controls = 12891/312803) of European ancestry. Epilepsy phenotypes included all epilepsy, generalized epilepsy and focal epilepsy from the Finn Gen R10 database. And two-step MR (TSMR) to discover the potential mediating metabolites. RESULTS In total, we found 19 gut microbial taxa to be causally associated with the risk of epilepsy, among which Omnitrophota phylum had the strongest association (OR, 2.3; P = 0.009) with promoting effect. We also identified 21 plasma metabolites associated with epilepsy, the strongest ones of which are eastotal fatty acids (OR, 1.12; P = 0.001) that exhibited a facilitating effect. We observed indirect effects of free cholesterol to total lipids ratio in large LDL in associations between Fournierella massiliensis species and epilepsy, with a mediated proportion of -3.64% (95%CI, -7.22%∼-0.06%; P = 0.046). CONCLUSION This study supports a causal link between Fournierella massiliensis species, free cholesterol to total lipids ratio in large LDL and epilepsy, as well as a mediating effect of free cholesterol to total lipids ratio in large LDL in epilepsy.
Collapse
Affiliation(s)
- Xi Wang
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haowen Duan
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fengfei Lu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xinyue Yu
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Minghan Xie
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Peiyi Chen
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Junjie Zou
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lijie Gao
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yingqian Cai
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Rongqing Chen
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Yanwu Guo
- The National Key Clinic Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Li J, Zang C, Li P, Sheng D, Xiao Z, Xiao B, Xia J, Zhou L. Investigating the role of gut microbiota in hemorrhagic stroke: Evidence from causal analysis. J Stroke Cerebrovasc Dis 2025; 34:108131. [PMID: 39528054 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hemorrhagic stroke is potentially fatal and debilitating. Previous studies have indicated a potential correlation between gut microbiota and hemorrhagic stroke. METHODS We conducted a two-sample Mendelian randomization (MR) study to assess the potential causal effects of gut microbiota on hemorrhagic stroke, including nontraumatic intracranial hemorrhage (ntICH), intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH). The inverse variance weighted (IVW) method was employed as the primary MR evaluation approach. Complementary methods of MR‒Egger, simple mode, weighted mode, and weighted median were utilized for validation. Heterogeneity and pleiotropy were assessed using Cochran's Q and MR‒Egger intercept tests. MR-PRESSO and leave-one-out analyses were employed to identify instrumental outliers. RESULTS The IVW estimates demonstrated significant causal associations between ntICH and taxa from two classes (Clostridia, Methanobacteria), one order (Methanobacteriales), two families (Clostridiales vadin BB60 group, Methanobacteriaceae), and two genera (Catenibacterium, unknown genus id. 1000000073) (P<0.05). Subgroup analyses revealed causal links between ICH and taxa from two classes (Clostridia, Methanobacteria), two orders (Methanobacteriales, Rhodospirillales), two families (Acidaminococcaceae, Methanobacteriaceae), and four genera (Butyricimonas, Catenibacterium, Lachnospiraceae UCG010, unknown genus id.2755) (P<0.05). Furthermore, for the SAH subgroup, we identified causal associations with taxa from one family (Rikenellaceae) and six genera (Alloprevotella, Enterorhabdus, Hungatella, Lachnoclostridium, Parabacteroides, Ruminococcus gauvreauii group) (P<0.05). These findings remained robust across all sensitivity tests. CONCLUSIONS Our findings provide support for the causal effects of specific gut microbial taxa on hemorrhagic stroke and identify promising targets for its prevention and therapy. Further research is warranted to validate these associations.
Collapse
Affiliation(s)
- Jiaxin Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenyang Zang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peihong Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dandan Sheng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zheng Xiao
- Department of Pathology, First Hospital of Changsha, Changsha, Hunan, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luo Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Shi Y, Xu M, Zhang X, Han Y, Xi G, Mao H, Deng J, Gao Q, Ji Y, Ma X, Li M, Cheng C, Fang X, Wang F. Interaction Between DHCR24 and hsa_circ_0015335 Facilitates Cognitive Impairment in Cerebral Small Vessel Disease Patients. CNS Neurosci Ther 2024; 30:e70131. [PMID: 39578712 PMCID: PMC11584349 DOI: 10.1111/cns.70131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
AIMS The study attempted to determine the underlying role and regulation mechanism of 3β-hydroxysterol-Δ24 reductase (DHCR24) in the pathophysiology of cerebral small vessel disease-associated cognitive impairment (CSVD-CI). An RNA high-throughput sequencing and independent verification were conducted to identify potential circRNAs becoming the upstream regulator. METHODS RNA sequencing was performed in whole-blood samples in cohort 1 (10 CSVD-CI and 8 CSVD with cognitively normal [CSVD-CN] patients). The DHCR24 and candidate circRNAs were verified in an independent cohort 2 (45 CSVD-CI participants and 37 CSVD-CN ones). The study also analyzed comprehensive cognitive assessments, plasma molecular index, and brain structure imaging. RESULTS The expression of DHCR24 and has_circ_0015335 in whole-blood samples of CSVD-CI patients was significantly reduced compared to CSVD-CN patients in RNA sequencing and independent verification. Furthermore, the levels of DHCR24 and has_circ_0015335 were significantly related to global cognitive impairment in CSVD-CI patients. Meanwhile, DHCR24 could regulate the correlation between has_circ_0015335 expression and alterations in brain cortex in surface area, thickness, and volume in CSVD-CI patients. Additionally, hsa_circ_0015335 interacted with DHCR24 for plasma 24(S)-hydroxycholesterol levels among CSVD-CI patients. CONCLUSION Interaction between DHCR24 and hsa_circ_0015335 cognitively impaired CSVD by affecting brain cholesterol metabolism and brain structural changes.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Min Xu
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Xiaoxuan Zhang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Yan Han
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Guangjun Xi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Haixia Mao
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Jingyu Deng
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Qianqian Gao
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Yi Ji
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Xuemei Ma
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Mingyu Li
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical CenterNanjing Medical UniversityWuxiChina
| |
Collapse
|
4
|
Csiszar A, Ungvari A, Patai R, Gulej R, Yabluchanskiy A, Benyo Z, Kovacs I, Sotonyi P, Kirkpartrick AC, Prodan CI, Liotta EM, Zhang XA, Toth P, Tarantini S, Sorond FA, Ungvari Z. Atherosclerotic burden and cerebral small vessel disease: exploring the link through microvascular aging and cerebral microhemorrhages. GeroScience 2024; 46:5103-5132. [PMID: 38639833 PMCID: PMC11336042 DOI: 10.1007/s11357-024-01139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.
Collapse
Affiliation(s)
- Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Ungvari
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary.
| | - Roland Patai
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094, Budapest, Hungary
- Cerebrovascular and Neurocognitive Disorders Research Group, HUN-REN, Semmelweis University, 1094, Budapest, Hungary
| | - Illes Kovacs
- Department of Ophthalmology, Semmelweis University, 1085, Budapest, Hungary
- Department of Ophthalmology, Weill Cornell Medical College, New York, NY, 10021, USA
| | - Peter Sotonyi
- Department of Vascular and Endovascular Surgery, Heart and Vascular Centre, Semmelweis University, 1122, Budapest, Hungary
| | - Angelia C Kirkpartrick
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Eric M Liotta
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xin A Zhang
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Peter Toth
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Public Health, Semmelweis University, Semmelweis University, Budapest, Hungary
- Department of Neurosurgery, Medical School, University of Pecs, Pecs, Hungary
- Neurotrauma Research Group, Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- ELKH-PTE Clinical Neuroscience MR Research Group, University of Pecs, Pecs, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Farzaneh A Sorond
- Department of Neurology, Division of Stroke and Neurocritical Care, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral College/Department of Public Health, Semmelweis University, Budapest, Hungary
| |
Collapse
|
5
|
Huang C, Zhang Y, Liu Y, Zhang M, Li Z, Li M, Ren M, Yin J, Zhou Y, Zhou X, Zhu X, Sun Z. A Bidirectional Mendelian Randomization Study of Gut Microbiota and Cerebral Small Vessel Disease. J Nutr 2024; 154:1994-2005. [PMID: 38642744 DOI: 10.1016/j.tjnut.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND The causal nature of gut microbiota and cerebral small vessel disease (CSVD) is still obscure regardless of evidence supporting their observational correlations. OBJECTIVES The primary objective of this research is to investigate the potentially pathogenic or protective causal impacts of specific gut microbiota on various neuroimaging subtypes of CSVD. METHODS We obtained the latest summary-level genome-wide databases for gut microbiota and 9 CSVD traits. The univariable and multivariable Mendelian randomization (MR) studies were conducted to examine the possible causal link between exposure and outcome. Meanwhile, we conducted sensitivity analyses sequentially, containing the heterogeneity, pleiotropy, and leave-one-out analysis. Additionally, to clarify the potential bidirectional causality, the causality from CSVD traits to the identified gut microbiota was implemented through reverse MR analysis. RESULTS The univariable MR analysis identified 22 genetically predicted bacterial abundances that were correlated with CSVD traits. Although conditioning on macronutrient dietary compositions, 2 suggestive relationships were retained using the multivariable MR analysis. Specifically, the class Negativicutes and order Selenomonadales exhibited a negative causal association with strictly lobar cerebral microbleeds, one neuroimaging trait of CSVD. There is insufficient evidence indicating the presence of heterogeneity and horizontal pleiotropy. Furthermore, the identified causal relationship was not driven by any single nucleotide polymorphism. The results of the reverse MR analysis did not reveal any statistically significant causality from CSVD traits to the identified gut microbiota. CONCLUSIONS Our study indicated several suggestive causal effects from gut microbiota to different neuroimaging subtypes of CSVD. These findings provided a latent understanding of the pathogenesis of CSVD from the perspective of the gut-brain axis.
Collapse
Affiliation(s)
- Chaojuan Huang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuyang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Department of Neurology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Man Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiwei Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingxu Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengmeng Ren
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiabin Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yajun Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
He P, Jiang C, Ni J, Zhang X, Wu Z, Chen G, Huang J, Dai Z, Ji W, Li L, Chen K, Shi Y. Identifying gut microbiota with high specificity for ischemic stroke with large vessel occlusion. Sci Rep 2024; 14:14086. [PMID: 38890373 PMCID: PMC11189444 DOI: 10.1038/s41598-024-64819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Gut microbiota can regulate the metabolic and immunological aspects of ischemic stroke and modulate the treatment effects. The present study aimed to identify specific changes in gut microbiota in patients with large vessel occlusion (LVO) ischemic stroke and assess the potential association between gut microbiota and clinical features of ischemic stroke. A total of 63 CSVD patients, 64 cerebral small vessel disease (CSVD) patients, and 36 matching normal controls (NCs) were included in this study. The fecal samples were collected for all participants and analyzed for gut microbiota using 16S rRNA gene sequencing technology. The abundances of five gut microbiota, including genera Bifidobacterium, Butyricimonas, Blautia, and Dorea and species Bifidobacterium_longum, showed significant changes with high specificity in the LVO patients as compared to the NCs and CSVD patients. In LVO patients, the genera Bifidobacterium and Blautia and species Bifidobacterium_longum were significantly correlated with the National Institutes of Health Stroke Scale (NIHSS) scores at the admission and discharge of the patients. Serum triglyceride levels could significantly affect the association of the abundance of genus Bifidobacterium and species Bifidobacterium_longum with the NIHSS scores at admission and modified Rankin Scale (mRS) at discharge in LVO patients. The identification of five gut microbiota with high specificity were identified in the early stage of LVO stroke, which contributed to performed an effective clinical management for LVO ischemic stroke.
Collapse
Affiliation(s)
- Ping He
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Qingyang Road No. 299, Wuxi, 214023, Jiangsu, China
| | - Chen Jiang
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Jianqiang Ni
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xiaoxuan Zhang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Zhifeng Wu
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Gengjing Chen
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Jin Huang
- Department of Neurosurgery Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Zheng Dai
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Qingyang Road No. 299, Wuxi, 214023, Jiangsu, China
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Wei Ji
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
- Department of Functional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Qingyang Road No. 299, Wuxi, 214023, Jiangsu, China
| | - Lei Li
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Qingyang Road No. 299, Wuxi, 214023, Jiangsu, China
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Kefei Chen
- Department of Functional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Qingyang Road No. 299, Wuxi, 214023, Jiangsu, China.
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Qingyang Road No. 299, Wuxi, 214023, Jiangsu, China.
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
7
|
Xu H, Xiao H, Tang Q. Lipopolysaccharide-induced intestinal inflammation on AIM2-mediated pyroptosis in the brain of rats with cerebral small vessel disease. Exp Neurol 2024; 375:114746. [PMID: 38428714 DOI: 10.1016/j.expneurol.2024.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Cerebral small vessel disease (CSVD) is a cerebral vascular disease with insidious onset and poor clinical treatment effect, which is related to neuroinflammation. This study investigated whether lipopolysaccharide-induced intestinal inflammation enhanced the level of pyroptosis in the brain of rats with CSVD. The bilateral carotid artery occlusion (BCAO) model was selected as the object of study. Firstly, behavioral tests and Hematoxylin-eosin staining (HE staining) were performed to determine whether the model was successful, and then the AIM2 inflammasome and pyroptosis indexes (AIM2, ASC, Caspase-1, IL-1β, GSDMD, N-GSDMD) in the brain were detected by Western blotting and Immunohistochemistry (IHC). Finally, a single intraperitoneal injection of lipopolysaccharide (LPS) was used to induce intestinal inflammation in rats, the expression of GSDMD and N-GSDMD in the brain was analyzed by Western blotting and to see if pyroptosis caused by intestinal inflammation can be inhibited by Disulfiram, an inhibitor of pyroptosis. The results showed that the inflammatory response and pyroptosis mediated by the AIM2 inflammasome in BCAO rats were present in both brain and intestine. The expression of N-GSDMD, a key marker of pyroptosis, in the brain was significantly increased and inhibited by Disulfiram after LPS-induced enhancement of intestinal inflammation. This study shows that AIM2-mediated inflammasome activation and pyroptosis exist in both brain and intestine in the rat model of CSVD. The enhancement of intestinal inflammation will increase the level of pyroptosis in the brain. In the future, targeted regulation of the AIM2 inflammasome may become a new strategy for the clinical treatment of CSVD.
Collapse
Affiliation(s)
- Huiping Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Han Xiao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
8
|
Shi Y, Deng J, Mao H, Han Y, Gao Q, Zeng S, Ma L, Ji W, Li Y, Xi G, Li L, You Y, Shao J, Chen K, Fang X, Wang F. Macrophage Migration Inhibitory Factor as a Potential Plasma Biomarker of Cognitive Impairment in Cerebral Small Vessel Disease. ACS OMEGA 2024; 9:15339-15349. [PMID: 38585104 PMCID: PMC10993283 DOI: 10.1021/acsomega.3c10126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
As the pathogenesis of cerebral small vessel disease with cognitive impairment (CSVD-CI) remains unclear, identifying effective biomarkers can contribute to the clinical management of CSVD-CI. This study recruited 54 healthy controls (HCs), 60 CSVD-CI patients, and 57 CSVD cognitively normal (CSVD-CN) patients. All participants underwent neuropsychological assessments and multimodal magnetic resonance imaging. Macrophage migration inhibitory factors (MIFs) were assessed in plasma. The least absolute shrinkage and selection operator model was used to determine a composite marker. Compared with HCs or CSVD-CN patients, CSVD-CI patients had significantly increased plasma MIF levels. In CSVD-CI patients, plasma MIF levels were significantly correlated with multiple cognitive assessment scores, plasma levels of blood-brain barrier (BBB)-related indices, white matter hyperintensity Fazekas scores, and the mean amplitude of low-frequency fluctuation in the right superior temporal gyrus. Higher plasma MIF levels were significantly associated with worse global cognition and information processing speed in CSVD-CI patients. The composite marker (including plasma MIF) distinguished CSVD-CI patients from CSVD-CN and HCs with >80% accuracy. Meta-analysis indicated that blood MIF levels were significantly increased in CSVD-CI patients. In conclusion, plasma MIF is a potential biomarker for early identification of CSVD-CI. Plasma MIF may play a role in cognitive decline in CSVD through BBB dysfunction and changes in white matter hyperintensity and brain activity.
Collapse
Affiliation(s)
- Yachen Shi
- Department
of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department
of Interventional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department
of Functional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Jingyu Deng
- Department
of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department
of Interventional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Haixia Mao
- Department
of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Yan Han
- Department
of Interventional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Qianqian Gao
- Department
of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Siyuan Zeng
- Department
of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Lin Ma
- Department
of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Wei Ji
- Department
of Functional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department
of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Yang Li
- Department
of Interventional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Guangjun Xi
- Department
of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department
of Interventional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Lei Li
- Department
of Interventional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Yiping You
- Department
of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department
of Functional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Junfei Shao
- Department
of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Kefei Chen
- Department
of Functional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department
of Neurosurgery, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Xiangming Fang
- Department
of Radiology, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
| | - Feng Wang
- Department
of Neurology, the Affiliated Wuxi People’s Hospital of Nanjing
Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, China
- Department
of Interventional Neurology, the Affiliated Wuxi People’s Hospital
of Nanjing Medical University, Wuxi People’s Hospital, Wuxi
Medical Center, Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|