1
|
Colombié S, Prigent S, Cassan C, Hilbert-Masson G, Renaud C, Dell'Aversana E, Carillo P, Moing A, Beaumont C, Beauvoit B, McCubbin T, Nielsen LK, Gibon Y. Comparative constraint-based modelling of fruit development across species highlights nitrogen metabolism in the growth-defence trade-off. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:786-803. [PMID: 37531405 DOI: 10.1111/tpj.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
Although primary metabolism is well conserved across species, it is useful to explore the specificity of its network to assess the extent to which some pathways may contribute to particular outcomes. Constraint-based metabolic modelling is an established framework for predicting metabolic fluxes and phenotypes and helps to explore how the plant metabolic network delivers specific outcomes from temporal series. After describing the main physiological traits during fruit development, we confirmed the correlations between fruit relative growth rate (RGR), protein content and time to maturity. Then a constraint-based method is applied to a panel of eight fruit species with a knowledge-based metabolic model of heterotrophic cells describing a generic metabolic network of primary metabolism. The metabolic fluxes are estimated by constraining the model using a large set of metabolites and compounds quantified throughout fruit development. Multivariate analyses showed a clear common pattern of flux distribution during fruit development with differences between fast- and slow-growing fruits. Only the latter fruits mobilise the tricarboxylic acid cycle in addition to glycolysis, leading to a higher rate of respiration. More surprisingly, to balance nitrogen, the model suggests, on the one hand, nitrogen uptake by nitrate reductase to support a high RGR at early stages of cucumber and, on the other hand, the accumulation of alkaloids during ripening of pepper and eggplant. Finally, building virtual fruits by combining 12 biomass compounds shows that the growth-defence trade-off is supported mainly by cell wall synthesis for fast-growing fruits and by total polyphenols accumulation for slow-growing fruits.
Collapse
Affiliation(s)
- Sophie Colombié
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Sylvain Prigent
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Cédric Cassan
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Ghislaine Hilbert-Masson
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882, Villenave d'Ornon, France
| | - Christel Renaud
- EGFV, Université de Bordeaux, Bordeaux Sciences Agro, INRAE, ISVV, 33882, Villenave d'Ornon, France
| | - Emilia Dell'Aversana
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Petronia Carillo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, 81100, Caserta, Italy
| | - Annick Moing
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| | - Chloé Beaumont
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Bertrand Beauvoit
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
| | - Tim McCubbin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Building 75), Brisbane, QLD, 4072, Australia
| | - Lars Keld Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College and Cooper Roads (Building 75), Brisbane, QLD, 4072, Australia
| | - Yves Gibon
- Univ. Bordeaux, INRAE, UMR1332 BFP, 33882, Villenave d'Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, 33140, Villenave d'Ornon, France
| |
Collapse
|
2
|
Ren R, Yue X, Li J, Xie S, Guo S, Zhang Z. Coexpression of Sucrose Synthase and the SWEET Transporter, Which Are Associated With Sugar Hydrolysis and Transport, Respectively, Increases the Hexose Content in Vitis vinifera L. Grape Berries. FRONTIERS IN PLANT SCIENCE 2020; 11:321. [PMID: 32457764 PMCID: PMC7221319 DOI: 10.3389/fpls.2020.00321] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 05/05/2023]
Abstract
The sugar content of grape berries is affected by many factors. To explore the hexose content in different cultivars, the photosynthesis, vegetative, and reproductive biomass, as well as the enzyme activities and expression levels of genes related to sugar metabolism and sugar contents were measured. Samples were collected 70-110 days after anthesis (DAA), from Riesling (RI), Petit Manseng (PM), and Cabernet Sauvignon (CS) berries cultivated in the field. The results indicated that high expression levels of VvSWEET15 and VvSS3 and a high activity of sucrose synthase (SS) are associated with a higher hexose content in the berries of PM than in the berries of the other two cultivars. These genes promoted hexose accumulation in the berries by regulating sugar hydrolysis and transport. The results of this study indicate that active sugar hydrolysis and transport increase the hexose content of PM berries, which provides insights for grape berry quality improvement and breeding projects in wine production. Main Conclusion: The active VvSS3, sucrose synthase (SS), and VvSWEET15 increases the hexose content in Petit Manseng berries, which are associated with sugar hydrolysis and transport.
Collapse
Affiliation(s)
- Ruihua Ren
- College of Enology, Northwest A&F University, Yangling, China
| | - Xiaofeng Yue
- College of Enology, Northwest A&F University, Yangling, China
| | - Junnan Li
- College of Enology, Northwest A&F University, Yangling, China
| | - Sha Xie
- College of Enology, Northwest A&F University, Yangling, China
| | - Shuihuan Guo
- College of Enology, Northwest A&F University, Yangling, China
| | - Zhenwen Zhang
- College of Enology, Northwest A&F University, Yangling, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling, China
| |
Collapse
|