1
|
Abstract
Patients with chronic kidney disease (CKD) are at high risk to develop cardiovascular disease with its manifestations coronary artery disease, heart failure, arrhythmias, and sudden cardiac death. In addition, the presence of CKD has a major impact on the prognosis of patients with cardiovascular disease, leading to an increased morbidity and mortality if both comorbidities are present. Therapeutic options including medical therapy and interventional treatment are often limited in patients with advanced CKD, and in most cardiovascular outcome trials, patients with advanced CKD have been excluded. Thus, in many patients, treatment strategies for cardiovascular disease need to be extrapolated from trials conducted in patients without CKD. The current article summarizes the epidemiology, clinical presentation, and treatment options for the most prevalent manifestations of cardiovascular disease in CKD and discusses the currently available treatment options to reduce morbidity and mortality in this high-risk population.
Collapse
Affiliation(s)
- Katharina Schuett
- Department of Internal Medicine I (Cardiology), University Hospital, RWTH Aachen University, Germany
| | - Nikolaus Marx
- Department of Internal Medicine I (Cardiology), University Hospital, RWTH Aachen University, Germany
| | - Michael Lehrke
- Department of Internal Medicine I (Cardiology), University Hospital, RWTH Aachen University, Germany
| |
Collapse
|
2
|
Lim K, McGregor G, Coggan AR, Lewis GD, Moe SM. Cardiovascular Functional Changes in Chronic Kidney Disease: Integrative Physiology, Pathophysiology and Applications of Cardiopulmonary Exercise Testing. Front Physiol 2020; 11:572355. [PMID: 33041870 PMCID: PMC7522507 DOI: 10.3389/fphys.2020.572355] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
The development of cardiovascular disease during renal impairment involves striking multi-tiered, multi-dimensional complex alterations encompassing the entire oxygen transport system. Complex interactions between target organ systems involving alterations of the heart, vascular, musculoskeletal and respiratory systems occur in Chronic Kidney Disease (CKD) and collectively contribute to impairment of cardiovascular function. These systemic changes have challenged our diagnostic and therapeutic efforts, particularly given that imaging cardiac structure at rest, rather than ascertainment under the stress of exercise, may not accurately reflect the risk of premature death in CKD. The multi-systemic nature of cardiovascular disease in CKD patients provides strong rationale for an integrated approach to the assessment of cardiovascular alterations in this population. State-of-the-art cardiopulmonary exercise testing (CPET) is a powerful, dynamic technology that enables the global assessment of cardiovascular functional alterations and reflects the integrative exercise response and complex machinery that form the oxygen transport system. CPET provides a wealth of data from a single assessment with mechanistic, physiological and prognostic utility. It is an underutilized technology in the care of patients with kidney disease with the potential to help advance the field of cardio-nephrology. This article reviews the integrative physiology and pathophysiology of cardio-renal impairment, critical new insights derived from CPET technology, and contemporary evidence for potential applications of CPET technology in patients with kidney disease.
Collapse
Affiliation(s)
- Kenneth Lim
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gordon McGregor
- Coventry University Hospital, Coventry and Warwickshire NHS Trust, Coventry, United Kingdom.,Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University - Purdue University, Indianapolis, IN, United States
| | - Gregory D Lewis
- Division of Cardiology, The Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sharon M Moe
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
3
|
Dilsizian V, Gewirtz H, Marwick TH, Kwong RY, Raggi P, Al-Mallah MH, Herzog CA. Cardiac Imaging for Coronary Heart Disease Risk Stratification in Chronic Kidney Disease. JACC Cardiovasc Imaging 2020; 14:669-682. [PMID: 32828780 DOI: 10.1016/j.jcmg.2020.05.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD), defined as dysfunction of the glomerular filtration apparatus, is an independent risk factor for the development of coronary artery disease (CAD). Patients with CKD are at a substantially higher risk of cardiovascular mortality compared with the age- and sex-adjusted general population with normal kidney function. The risk of CAD and mortality in patients with CKD is correlated with the degree of renal dysfunction including presence of microalbuminuria. A greater cardiovascular risk, albeit lower than for patients receiving dialysis, persists even after kidney transplantation. Congestive heart failure, commonly caused by CAD, also accounts for a significant portion of the cardiovascular-related events observed in CKD. The optimal strategy for the evaluation of CAD in patients with CKD, particularly before renal transplantation, remains a topic of contention spanning over several decades. Although the evaluation of coexisting cardiac disease in patients with CKD is desirable, severe renal dysfunction limits the use of radiographic and magnetic resonance contrast agents due to concerns regarding contrast-induced nephropathy and nephrogenic systemic sclerosis, respectively. In addition, many patients with CKD have extensive and premature (often medial) calcification disproportionate to the severity of obstructive CAD, thereby limiting the diagnostic value of computed tomography angiography. As such, echocardiography, non-contrast-enhanced magnetic resonance, nuclear myocardial perfusion, and metabolic imaging offer a variety of approaches to assess obstructive CAD and cardiomyopathy of advanced CKD without the need for nephrotoxic contrast agents.
Collapse
Affiliation(s)
- Vasken Dilsizian
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| | - Henry Gewirtz
- Department of Medicine (Cardiology Division), Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas H Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Raymond Y Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Mouaz H Al-Mallah
- Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Charles A Herzog
- Department of Medicine (Cardiology Division) and Chronic Disease Research Group, Hennepin Healthcare, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
4
|
Shah R, Sree Raman K, Walls A, Woodman RJ, Faull R, Gleadle JM, Selvanayagam JB. Gadolinium-Free Cardiovascular Magnetic Resonance Stress T1 Mapping in Patients With Chronic Kidney Disease. JACC Cardiovasc Imaging 2019; 12:2083-2085. [PMID: 31202747 DOI: 10.1016/j.jcmg.2019.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
|
5
|
Shah R, Parnham S, Liang Z, Perry R, Bradbrook C, Smith E, Faull R, Woodman RJ, Nucifora G, Gleadle JM, Selvanayagam JB. Prognostic Utility of Oxygen-Sensitive Cardiac Magnetic Resonance Imaging in Diabetic and Nondiabetic Chronic Kidney Disease Patients With No Known Coronary Artery Disease. JACC Cardiovasc Imaging 2019; 12:1107-1109. [PMID: 30772234 DOI: 10.1016/j.jcmg.2018.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/26/2023]
|
6
|
Shah R, Gleadle JM, Selvanayagam JB. Predicting Cardiac Prognosis in Asymptomatic Chronic Kidney Disease Patients. JACC Cardiovasc Imaging 2018; 11:286-287. [PMID: 29413649 DOI: 10.1016/j.jcmg.2017.11.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
|
7
|
Sulemane S, Panoulas VF, Nihoyannopoulos P. Echocardiographic assessment in patients with chronic kidney disease: Current update. Echocardiography 2017; 34:594-602. [PMID: 28266730 DOI: 10.1111/echo.13495] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Patients with chronic kidney disease (CKD) carry a high cardiovascular risk. An abundance of evidence has emerged in recent years establishing minor reductions in estimated glomerular filtration rate as an independent risk factor for cardiovascular mortality. Additionally, cardiac changes, such as left ventricular hypertrophy and impaired left ventricular systolic function, have been associated with an unfavorable prognosis. Despite the significant prevalence of underlying cardiac abnormalities, symptoms may not manifest in many patients with CKD. A range of available and emerging echocardiographic modalities may assist with diagnosing heart disease in CKD. Furthermore, some of these emerging techniques can give an important insight into the pathophysiology of subclinical dysfunction in CKD. This review discusses how current and emerging echocardiographic modalities such as speckle tracking echocardiography and 3D echocardiography might help cardiologists in providing important information to help with diagnosis and risk stratification of cardiac-related morbidity and mortality in patients with renal disease, as well applicability of these tools to current clinical practice.
Collapse
Affiliation(s)
- Samir Sulemane
- Imperial College London, National Heart and Lung Institute, London, United Kingdom
| | - Vasileios F Panoulas
- Imperial College London, National Heart and Lung Institute, London, United Kingdom.,Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, United Kingdom
| | | |
Collapse
|
8
|
Affiliation(s)
- Christopher L Wray
- Liver Transplant Division, Liver Transplant Anesthesia Fellowship, Department of Anesthesiology and Perioperative Medicine, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Suite 3325, Los Angeles, CA 90095-7403, USA.
| |
Collapse
|
9
|
Parnham S, Gleadle JM, Bangalore S, Grover S, Perry R, Woodman RJ, De Pasquale CG, Selvanayagam JB. Impaired Myocardial Oxygenation Response to Stress in Patients With Chronic Kidney Disease. J Am Heart Assoc 2015; 4:e002249. [PMID: 26260054 PMCID: PMC4599475 DOI: 10.1161/jaha.115.002249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Coronary artery disease and left ventricular hypertrophy are prevalent in the chronic kidney disease (CKD) and renal transplant (RT) population. Advances in cardiovascular magnetic resonance (CMR) with blood oxygen level-dependent (BOLD) technique provides capability to assess myocardial oxygenation as a measure of ischemia. We hypothesized that the myocardial oxygenation response to stress would be impaired in CKD and RT patients. METHODS AND RESULTS Fifty-three subjects (23 subjects with CKD, 10 RT recipients, 10 hypertensive (HT) controls, and 10 normal controls without known coronary artery disease) underwent CMR scanning. All groups had cine and BOLD CMR at 3 T. The RT and HT groups also had late gadolinium CMR to assess infarction/replacement fibrosis. The CKD group underwent 2-dimensional echocardiography strain to assess fibrosis. Myocardial oxygenation was measured at rest and under stress with adenosine (140 μg/kg per minute) using BOLD signal intensity. A total of 2898 myocardial segments (1200 segments in CKD patients, 552 segments in RT, 480 segments in HT, and 666 segments in normal controls) were compared using linear mixed modeling. Diabetes mellitus (P=0.47) and hypertension (P=0.57) were similar between CKD, RT, and HT groups. The mean BOLD signal intensity change was significantly lower in the CKD and RT groups compared to HT controls and normal controls (-0.89±10.63% in CKD versus 5.66±7.87% in RT versus 15.54±9.58% in HT controls versus 16.19±11.11% in normal controls, P<0.0001). BOLD signal intensity change was associated with estimated glomerular filtration rate (β=0.16, 95% CI=0.10 to 0.22, P<0.0001). Left ventricular mass index and left ventricular septal wall diameter were similar between the CKD predialysis, RT, and HT groups. None of the CKD patients had impaired global longitudinal strain and none of the RT group had late gadolinium hyperenhancement. CONCLUSIONS Myocardial oxygenation response to stress is impaired in CKD patients and RT recipients without known coronary artery disease, and unlikely to be solely accounted for by the presence of diabetes mellitus, left ventricular hypertrophy, or myocardial scarring. The impaired myocardial oxygenation in CKD patients may be associated with declining renal function. Noncontrast BOLD CMR is a promising tool for detecting myocardial ischemia in the CKD population.
Collapse
Affiliation(s)
- Susie Parnham
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia (S.P., S.G., R.P., C.G.D.P., J.B.S.) School of Medicine, Flinders University, Bedford Park, South Australia, Australia (S.P., J.M.G., R.P., C.G.D.P., J.B.S.) South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (S.P., S.G., J.B.S.)
| | - Jonathan M Gleadle
- Department of Renal Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia (J.M.G.) School of Medicine, Flinders University, Bedford Park, South Australia, Australia (S.P., J.M.G., R.P., C.G.D.P., J.B.S.)
| | - Sripal Bangalore
- Cardiac Catheterization Laboratory, Cardiovascular Outcomes Group, New York University School of Medicine, New York, NY (S.B.)
| | - Suchi Grover
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia (S.P., S.G., R.P., C.G.D.P., J.B.S.) South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (S.P., S.G., J.B.S.)
| | - Rebecca Perry
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia (S.P., S.G., R.P., C.G.D.P., J.B.S.) School of Medicine, Flinders University, Bedford Park, South Australia, Australia (S.P., J.M.G., R.P., C.G.D.P., J.B.S.)
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, School of Medicine, Flinders University, Bedford Park, South Australia, Australia (R.J.W.)
| | - Carmine G De Pasquale
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia (S.P., S.G., R.P., C.G.D.P., J.B.S.) School of Medicine, Flinders University, Bedford Park, South Australia, Australia (S.P., J.M.G., R.P., C.G.D.P., J.B.S.)
| | - Joseph B Selvanayagam
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, South Australia, Australia (S.P., S.G., R.P., C.G.D.P., J.B.S.) School of Medicine, Flinders University, Bedford Park, South Australia, Australia (S.P., J.M.G., R.P., C.G.D.P., J.B.S.) South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia (S.P., S.G., J.B.S.)
| |
Collapse
|
10
|
Parnham S, Gleadle JM, Leong D, Grover S, Bradbrook C, Woodman RJ, De Pasquale CG, Selvanayagam JB. Myocardial perfusion is impaired in asymptomatic renal and liver transplant recipients: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2015; 17:56. [PMID: 26160365 PMCID: PMC4702380 DOI: 10.1186/s12968-015-0166-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/24/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Myocardial ischemia is a major cause of death in chronic kidney disease (CKD) patients, which can be caused by either epicardial or microvascular coronary artery disease (CAD). Although renal transplantation improves survival, cardiovascular disease remains a major cause of mortality in post renal transplant recipients, including those with no significant epicardial CAD pre-transplant. We aim to utilize stress cardiovascular magnetic resonance (CMR) and MR coronary angiography (MRCA) to assess silent myocardial ischemia and epicardial CAD in renal transplant recipients. METHODS Forty-five subjects: twenty renal transplant (RT) with no known CAD, fifteen liver transplant (LT) controls without prior CKD and no known CAD, and ten hypertensive (HT) controls underwent stress perfusion CMR and MRCA. RESULTS A total of 1308 myocardial segments (576 of RT, 468 of LT, and 264 of HT) were compared using mixed linear modeling. Left ventricular mass index, septal diameter and presence of diabetes mellitus were similar between the groups. The mean transmural MPRI was significantly lower in the RT and LT groups compared to HT controls (1.19 ± 0.50 in RT versus 1.23 ± 0.36 in LT versus 2.04 ± 0.32 in HT controls, p < 0.0001), in the subepicardium (1.33 ± 0.57 in RT versus 1.30 ± 0.33 in LT versus 2.01 ± 0.30 in HT controls, p < 0.001), and in the subendocardium (1.19 ± 0.54 in RT versus 1.11 ± 0.31 in LT versus 1.85 ± 0.34 in HT controls, p < 0.0001). Seven (35%) RT and five (33%) LT had significant epicardial CAD compared to none in HT controls, p = 0.12. One RT and one LT had LGE suggesting sub-endocardial infarction. CONCLUSIONS RT recipients have impaired myocardial perfusion independent of LVH or diabetes mellitus. The impaired myocardial perfusion in RT is similar to LT without prior renal disease, thus unlikely related to previous CKD. It is not fully explained by the presence of significant epicardial CAD, and therefore most likely represents microvascular CAD.
Collapse
Affiliation(s)
- Susie Parnham
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia.
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, Australia.
| | - Jonathan M Gleadle
- Department of Renal Medicine, Bedford Park, Adelaide, SA, Australia.
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, Australia.
| | - Darryl Leong
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, Australia.
- Population Health Research Institute, Hamilton, ON, Canada.
| | - Suchi Grover
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia.
| | - Craig Bradbrook
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia.
| | - Richard J Woodman
- Flinders Centre for Epidemiology and Biostatistics, School of Medicine, Flinders University, Bedford Park, Adelaide, SA, Australia.
| | - Carmine G De Pasquale
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia.
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, Australia.
| | - Joseph B Selvanayagam
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia.
- School of Medicine, Flinders University, Bedford Park, Adelaide, SA, Australia.
| |
Collapse
|