1
|
Gaydarski L, Petrova K, Stanchev S, Pelinkov D, Iliev A, Dimitrova IN, Kirkov V, Landzhov B, Stamenov N. Morphometric and Molecular Interplay in Hypertension-Induced Cardiac Remodeling with an Emphasis on the Potential Therapeutic Implications. Int J Mol Sci 2025; 26:4022. [PMID: 40362262 PMCID: PMC12071960 DOI: 10.3390/ijms26094022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/16/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Hypertension-induced cardiac remodeling is a complex process driven by interconnected molecular and cellular mechanisms that culminate in hypertensive myocardium, characterized by ventricular hypertrophy, fibrosis, impaired angiogenesis, and myocardial dysfunction. This review discusses the histomorphometric changes in capillary density, fibrosis, and mast cells in the hypertensive myocardium and delves into the roles of key regulatory systems, including the apelinergic system, vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) pathways, and nitric oxide (NO)/nitric oxide synthase (NOS) signaling in the pathogenesis of hypertensive heart disease (HHD). Capillary rarefaction, a hallmark of HHD, contributes to myocardial ischemia and fibrosis, underscoring the importance of maintaining vascular integrity. Targeting capillary density (CD) through antihypertensive therapy or angiogenic interventions could significantly improve cardiac outcomes. Myocardial fibrosis, mediated by excessive collagen deposition and influenced by fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-β), plays a pivotal role in the structural remodeling of hypertensive myocardium. While renin-angiotensin-aldosterone system (RAAS) inhibitors show anti-fibrotic effects, more targeted therapies are needed to address fibrosis directly. Mast cells, though less studied in humans, emerge as critical regulators of cardiac remodeling through their release of pro-fibrotic mediators such as histamine, tryptase, and FGF-2. The apelinergic system emerges as a promising therapeutic target due to its vasodilatory, anti-fibrotic, and cardioprotective properties. The system counteracts the deleterious effects of the RAAS and has demonstrated efficacy in preclinical models of hypertension-induced cardiac damage. Despite its potential, human studies on apelin analogs remain limited, warranting further exploration to evaluate their clinical utility. VEGF signaling plays a dual role, facilitating angiogenesis and compensatory remodeling during the early stages of arterial hypertension (AH) but contributing to maladaptive changes when dysregulated. Modulating VEGF signaling through exercise or pharmacological interventions has shown promise in improving CD and mitigating hypertensive cardiac damage. However, VEGF inhibitors, commonly used in oncology, can exacerbate AH and endothelial dysfunction, highlighting the need for therapeutic caution. The NO/NOS pathway is essential for vascular homeostasis and the prevention of oxidative stress. Dysregulation of this pathway, particularly endothelial NOS (eNOS) uncoupling and inducible NOS (iNOS) overexpression, leads to endothelial dysfunction and nitrosative stress in hypertensive myocardium. Strategies to restore NO bioavailability, such as tetrahydrobiopterin (BH4) supplementation and antioxidants, hold potential for therapeutic application but require further validation. Future studies should adopt a multidisciplinary approach to integrate molecular insights with clinical applications, paving the way for more personalized and effective treatments for HHD. Addressing these challenges will not only enhance the understanding of hypertensive myocardium but also improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Kristina Petrova
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Dimitar Pelinkov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Iva N. Dimitrova
- Department of Cardiology, University Hospital “St. Ekaterina”, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health ‘Prof. Dr. Tzekomir Vodenicharov’, Medical University of Sofia, 1527 Sofia, Bulgaria;
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| | - Nikola Stamenov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, 1431 Sofia, Bulgaria; (K.P.); (S.S.); (D.P.); (A.I.); (B.L.); (N.S.)
| |
Collapse
|
2
|
Liu C, Xiong J, Yi X, Song S, Yang H, Tan W, Yang X, Zheng L, Yu J, Xu C. Decreased plasma ELABELA level as a novel screening indicator for heart failure: a cohort and observational study. Sci Rep 2024; 14:11333. [PMID: 38760403 PMCID: PMC11101417 DOI: 10.1038/s41598-024-61480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
The predictive power of B-type natriuretic peptide (BNP) and left ventricular ejection fraction (LVEF) is limited by its low specificity in patients with heart failure (HF). Discovery of more novel biomarkers for HF better diagnosis is necessary and urgent. ELABELA, an early endogenous ligand for the G protein-coupled receptor APJ (Apelin peptide jejunum, Apelin receptor), exhibits cardioprotective actions. However, the relationship between plasma ELABELA and cardiac function in HF patients is unclear. To evaluate plasma ELABELA level and its diagnostic value in HF patients, a total of 335 patients with or without HF were recruited for our monocentric observational study. Plasma ELABELA and Apelin levels were detected by immunoassay in all patients. Spearman correlation analysis was used to analyze the correlation between plasma ELABELA or Apelin levels and study variables. The receiver operating characteristic curves were used to access the predictive power of plasma ELABELA or Apelin levels. Plasma ELABELA levels were lower, while plasma Apelin levels were higher in HF patients than in non-HF patients. Plasma ELABELA levels were gradually decreased with increasing New York Heart Association grade or decreasing LVEF. Plasma ELABELA levels were negatively correlated with BNP, left atrial diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter, and left ventricular posterior wall thickness and positively correlated with LVEF in HF patients. In contrast, the correlation between plasma Apelin levels and these parameters is utterly opposite to ELABELA. The diagnostic value of ELABELA, Apelin, and LVEF for all HF patients was 0.835, 0.673, and 0.612; the sensitivity was 62.52, 66.20, and 32.97%; and the specificity was 95.92, 67.23, and 87.49%, respectively. All these parameters in HF patients with preserved ejection fraction were comparable to those in total HF patients. Overall, plasma ELABELA levels were significantly reduced and negatively correlated with cardiac function in HF patients. Decreased plasma ELABELA levels may function as a novel screening biomarker for HF. A combined assessment of BNP and ELABELA may be a good choice to increase the accuracy of the diagnosis of HF.
Collapse
Affiliation(s)
- Chunju Liu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Jianhua Xiong
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Xiaoli Yi
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shanshan Song
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiru Yang
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Wenting Tan
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiaojun Yang
- Department of Clinical Laboratory, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, 330006, China
| | - Lixiang Zheng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Jun Yu
- Center for Metabolic Disease Research and Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
3
|
Xu C. Cardiovascular aspects of ELABELA: A potential diagnostic biomarker and therapeutic target. Vascul Pharmacol 2023; 151:107193. [PMID: 37433415 DOI: 10.1016/j.vph.2023.107193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
ELABELA, an early endogenous ligand for the G protein-coupled receptor APJ (apelin peptide jejunum, apelin receptor), has been known as an important regulator in cardiovascular homeostasis and may be a novel therapeutic target for multiple cardiovascular diseases (CVDs). At the physiological level, ELABELA exhibits angiogenic and vasorelaxant effects and is essential for heart development. At the pathological level, circulating ELABELA levels may be a novel diagnostic biomarker for various CVDs. ELABELA peripherally displays antihypertensive, vascular-protective, and cardioprotective effects, whereas central administration of ELABELA elevated BP and caused cardiovascular remodeling. This review highlights the physiological and pathological roles of ELABELA in the cardiovascular system. Enhancement of the peripheral ELABELA may be a promising pharmacological therapeutic strategy for CVDs.
Collapse
Affiliation(s)
- Chuanming Xu
- Translational Medicine Centre, Jiangxi University of Chinese Medicine, Nanchang 330002, Jiangxi, China.
| |
Collapse
|
4
|
Rossin D, Vanni R, Lo Iacono M, Cristallini C, Giachino C, Rastaldo R. APJ as Promising Therapeutic Target of Peptide Analogues in Myocardial Infarction- and Hypertension-Induced Heart Failure. Pharmaceutics 2023; 15:pharmaceutics15051408. [PMID: 37242650 DOI: 10.3390/pharmaceutics15051408] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention. However, the low plasma half-life of native apelin and ELABELA isoforms lowered their potential for pharmacological applications. In recent years, many research groups focused their attention on studying how APJ ligand modifications could affect receptor structure and dynamics as well as its downstream signalling. This review summarises the novel insights regarding the role of APJ-related pathways in myocardial infarction and hypertension. Furthermore, recent progress in designing synthetic compounds or analogues of APJ ligands able to fully activate the apelinergic pathway is reported. Determining how to exogenously regulate the APJ activation could help to outline a promising therapy for cardiac diseases.
Collapse
Affiliation(s)
- Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, 56126 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
5
|
Pécheux O, Correia-Branco A, Cohen M, Martinez de Tejada B. The Apelinergic System in Pregnancy. Int J Mol Sci 2023; 24:ijms24098014. [PMID: 37175743 PMCID: PMC10178735 DOI: 10.3390/ijms24098014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The apelinergic system is a highly conserved pleiotropic system. It comprises the apelin receptor apelin peptide jejunum (APJ) and its two peptide ligands, Elabela/Toddler (ELA) and apelin, which have different spatiotemporal localizations. This system has been implicated in the regulation of the adipoinsular axis, in cardiovascular and central nervous systems, in carcinogenesis, and in pregnancy in humans. During pregnancy, the apelinergic system is essential for embryo cardiogenesis and vasculogenesis and for placental development and function. It may also play a role in the initiation of labor. The apelinergic system seems to be involved in the development of placenta-related pregnancy complications, such as preeclampsia (PE) and intrauterine growth restriction, but an improvement in PE-like symptoms and birth weight has been described in murine models after the exogenous administration of apelin or ELA. Although the expression of ELA, apelin, and APJ is altered in human PE placenta, data related to their circulating levels are inconsistent. This article reviews current knowledge about the roles of the apelinergic system in pregnancy and its pathophysiological roles in placenta-related complications in pregnancy. We also discuss the challenges in translating the actors of the apelinergic system into a marker or target for therapeutic interventions in obstetrics.
Collapse
Affiliation(s)
- Océane Pécheux
- Obstetrics Division, Department of Woman, Child and Adolescent, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Ana Correia-Branco
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Marie Cohen
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Begoῆa Martinez de Tejada
- Obstetrics Division, Department of Woman, Child and Adolescent, Geneva University Hospitals, 1205 Geneva, Switzerland
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
6
|
Sharma M, Prabhavalkar KS, Bhatt LK. Elabela Peptide: An Emerging Target in Therapeutics. Curr Drug Targets 2022; 23:1304-1318. [PMID: 36029072 DOI: 10.2174/1389450123666220826160123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
Elabela, a bioactive micropeptide, is recognized as the second endogenous ligand for the Apelin receptor and is widely distributed in different tissues and organs. Elabela plays an important role in various physiological processes, such as blood pressure control, heart morphogenesis, apoptosis, angiogenesis, cell proliferation, migration, etc. Elabela is also implicated in pathological conditions, like cardiac dysfunctions, heart failure, hypertension, kidney diseases, cancer and CNS disorders. The association of Elabela with these disease conditions makes it a potential target for their therapy. This review summarizes the physiological role of Elabela peptide as well as its implication in various disease conditions.
Collapse
Affiliation(s)
- Maneesha Sharma
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
7
|
Wang X, Zhang L, Feng M, Xu Z, Cheng Z, Qian L. ELA-11 protects the heart against oxidative stress injury induced apoptosis through ERK/MAPK and PI3K/AKT signaling pathways. Front Pharmacol 2022; 13:873614. [PMID: 36160397 PMCID: PMC9492932 DOI: 10.3389/fphar.2022.873614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence revealed that apoptosis and oxidative stress injury were associated with the pathophysiology of doxorubicin (DOX)-induced myocardial injury. ELABELA (ELA) is a newly identified peptide with 32 amino acids, can reduce hypertension with exogenous infusion. However, the effect of 11-residue furn-cleaved fragment (ELA-11) is still unclear. We first administrated ELA-11 in DOX-injured mice and measured the cardiac function and investigated the effect of ELA-11 in vivo. We found that ELA-11 alleviated heart injury induced by DOX and inhibited cardiac tissues from apoptosis. In vitro, ELA-11 regulated the sensitivity towards apoptosis induced by oxidative stress with DOX treatment through PI3K/AKT and ERK/MAPK signaling pathway. Similarly, ELA-11 inhibited oxidative stress-induced apoptosis in cobalt chloride (CoCl2)-injured cardiomyocytes. Moreover, ELA-11 protected cardiomyocyte by interacting with Apelin receptor (APJ) by using 4-oxo-6-((pyrimidin-2-ylthio) methyl)-4H-pyran-3-yl 4-nitrobenzoate (ML221). Hence, our results indicated a protective role of ELA-11 in oxidative stress-induced apoptosis in DOX-induced myocardial injury.
Collapse
Affiliation(s)
- Xuejun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengwen Feng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqing Xu
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zijie Cheng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zijie Cheng, ; Lingmei Qian,
| | - Lingmei Qian
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zijie Cheng, ; Lingmei Qian,
| |
Collapse
|
8
|
Dindas F, Koyuncu I, Ocek L, Ozdemir AV, Yılmaz H, Abacıoglu OO, Yıldırım A, Yenercag M, Dogdus M. Association of serum elabela levels with carotid artery stenosis in patients with non-cardioembolic ischemic stroke. Biomark Med 2022; 16:623-631. [PMID: 35549392 DOI: 10.2217/bmm-2021-0865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Elabela (ELA) is a peptide of the apelinergic system and is known to play a role in endothelial homeostasis and vascular pathobiology. In this study, the relationship between carotid artery stenosis, which is the main culprit, and ELA level in patients with non-cardioembolic ischemic stroke was investigated. Materials & methods: Cross-sectional observation included two groups of 40 patients with critical carotid artery stenosis and 40 patients with age-sex matched noncritical carotid artery stenosis. Results: ELA levels were significantly higher in the noncritical stenosis group. ELA had a significantly moderate negative correlation with the carotid score (r = -0.334, p = 0.003), maximal carotid plaque length (r = -0.413, p < 0.001) and degree of stenosis (r = -0.397, p < 0.001). Conclusions: There is a significant inverse correlation between critical carotid artery disease and ELA level in patients with non-cardioembolic ischemic stroke.
Collapse
Affiliation(s)
- Ferhat Dindas
- Department of Cardiology, Usak University, Training & Research Hospital, Usak, 64000, Turkey
| | - Ilhan Koyuncu
- Department of Cardiology, Usak University, Training & Research Hospital, Usak, 64000, Turkey
| | - Levent Ocek
- Department of Neurology, University of Health Sciences Izmir Tepecik Training & Research Hospital, Izmir, 35460, Turkey
| | - Ali V Ozdemir
- Department of Biochemistry, Usak University, Training & Research Hospital, Usak, 64000, Turkey
| | - Hakan Yılmaz
- Department of Radiology, Usak University, Training & Research Hospital, Usak, 64000, Turkey
| | - Ozge O Abacıoglu
- University of Health Sciences, Adana Health Practice & Research Center, Adana, 01000, Turkey
| | - Arafat Yıldırım
- University of Health Sciences, Adana Health Practice & Research Center, Adana, 01000, Turkey
| | - Mustafa Yenercag
- Department of Cardiology, Ordu University, Training & Research Hospital, Ordu, 52200, Turkey
| | - Mustafa Dogdus
- Department of Cardiology, Usak University, Training & Research Hospital, Usak, 64000, Turkey
| |
Collapse
|
9
|
Dawid M, Mlyczyńska E, Jurek M, Respekta N, Pich K, Kurowska P, Gieras W, Milewicz T, Kotula-Balak M, Rak A. Apelin, APJ, and ELABELA: Role in Placental Function, Pregnancy, and Foetal Development-An Overview. Cells 2021; 11:cells11010099. [PMID: 35011661 PMCID: PMC8750556 DOI: 10.3390/cells11010099] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
The apelinergic system, which includes the apelin receptor (APJ) as well as its two specific ligands, namely apelin and ELABELA (ELA/APELA/Toddler), have been the subject of many recent studies due to their pleiotropic effects in humans and other animals. Expression of these factors has been investigated in numerous tissues and organs—for example, the lungs, heart, uterus, and ovary. Moreover, a number of studies have been devoted to understanding the role of apelin and the entire apelinergic system in the most important processes in the body, starting from early stages of human life with regulation of placental function and the proper course of pregnancy. Disturbances in the balance of placental processes such as proliferation, apoptosis, angiogenesis, or hormone secretion may lead to specific pregnancy pathologies; therefore, there is a great need to search for substances that would help in their early diagnosis or treatment. A number of studies have indicated that compounds of the apelinergic system could serve this purpose. Hence, in this review, we summarized the most important reports about the role of apelin and the entire apelinergic system in the regulation of placental physiology and pregnancy.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Małgorzata Jurek
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Wiktoria Gieras
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
| | - Tomasz Milewicz
- Department of Gynecological Endocrinology, Jagiellonian University Medical College, 31-501 Krakow, Poland;
| | - Małgorzata Kotula-Balak
- University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (M.D.); (E.M.); (M.J.); (N.R.); (K.P.); (P.K.); (W.G.)
- Correspondence: ; Tel.: +48-1-2664-5003
| |
Collapse
|
10
|
Targeting the elabela/apelin-apelin receptor axis as a novel therapeutic approach for hypertension. Chin Med J (Engl) 2021; 135:1019-1026. [PMID: 34608073 PMCID: PMC9276310 DOI: 10.1097/cm9.0000000000001766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
ABSTRACT Hypertension is the leading risk factor for global mortality and morbidity and those with hypertension are more likely to develop severe symptoms in cardiovascular and cerebrovascular system, which is closely related to abnormal renin-angiotensin system and elabela/apelin-apelin receptor (APJ) axis. The elabela/apelin-APJ axis exerts essential roles in regulating blood pressure levels, vascular tone, and cardiovascular dysfunction in hypertension by counterbalancing the action of the angiotensin II/angiotensin II type 1 receptor axis and enhancing the endothelial nitric oxide (NO) synthase/NO signaling. Furthermore, the elabela/apelin-APJ axis demonstrates beneficial effects in cardiovascular physiology and pathophysiology, including angiogenesis, cellular proliferation, fibrosis, apoptosis, oxidative stress, and cardiovascular remodeling and dysfunction during hypertension. More importantly, effects of the elabela/apelin-APJ axis on vascular tone may depend upon blood vessel type or various pathological conditions. Intriguingly, the broad distribution of elabela/apelin and alternative isoforms implicated its distinct functions in diverse cardiac and vascular cells and tissue types. Finally, both loss-of-function and gain-of-function approaches have defined critical roles of the elabela/apelin-APJ axis in reducing the development and severity of hypertensive diseases. Thus, targeting the elabela/apelin-APJ axis has emerged as a pre-warning biomarker and a novel therapeutic approach against progression of hypertension, and an increased understanding of cardiovascular actions of the elabela/apelin-APJ axis will help to develop effective interventions for hypertension. In this review, we focus on the physiology and biochemistry, diverse actions, and underlying mechanisms of the elabela/apelin-APJ axis, highlighting its role in hypertension and hypertensive cardiovascular injury and dysfunction, with a view to provide a prospective strategy for hypertensive disease therapy.
Collapse
|