1
|
Crocco P, Montesanto A, La Grotta R, Paparazzo E, Soraci L, Dato S, Passarino G, Rose G. The Potential Contribution of MyomiRs miR-133a-3p, -133b, and -206 Dysregulation in Cardiovascular Disease Risk. Int J Mol Sci 2024; 25:12772. [PMID: 39684483 DOI: 10.3390/ijms252312772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Cardiovascular disease (CVD) is a major global health concern. The number of people with CVD is expected to rise due to aging populations and increasing risk factors such as obesity and diabetes. Identifying new molecular markers is crucial for early diagnosis and treatment. Among these, plasma levels of some miRNAs, specifically expressed in cardiac and skeletal muscle, known as myomiRs, have gained attention for their roles in cardiovascular health. This study analyzed the plasma levels of miR-133a-3p, -133b, and -206 in the pathogenesis of cardiovascular diseases. Using a case-control study design with patients recruited from several nursing homes from Calabria (southern Italy) characterized by different types of CVD compared with non-CVD controls, we found downregulation of miR-133a-3p in heart failure and miR-133b in stroke, along with the overall decreased expression of miR-133b and miR-206 in CVD patients, although they showed low specificity as biomarkers of CVD (as based on ROC analysis). In silico functional characterization of their targets and signaling pathways revealed their involvement in critical cardiovascular processes. Although further research is necessary to fully elucidate their mechanisms and clinical utility, the findings reported here may provide insight into the potential contribution of myomiRs in the cardiovascular injury framework, also offering indications for new research directions.
Collapse
Affiliation(s)
- Paolina Crocco
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Rossella La Grotta
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (INRCA-IRCCS), 87100 Cosenza, Italy
| | - Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppina Rose
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
2
|
Ameer SF, Elsaka M, Kahtoon S, Kerzabi RI, Casu G, Giordo R, Zayed H, Pintus G. Exploring the role of exosomes in the pathogenesis and treatment of cardiomyopathies: A comprehensive literature review. Life Sci 2024; 357:123063. [PMID: 39299384 DOI: 10.1016/j.lfs.2024.123063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Exosomes, a subset of small extracellular vesicles that play a crucial role in intercellular communication, have garnered significant attention for their potential applications in the diagnosis and treatment of cardiomyopathies. Cardiomyopathies, which encompass a spectrum of heart muscle disorders, present complex challenges in diagnosis and management. Understanding the role of exosomes in the etiology of cardiomyopathies such as dilated cardiomyopathy (DCM), restrictive cardiomyopathy (RCM), arrhythmogenic cardiomyopathy (AC), and hypertrophic cardiomyopathy (HCM) may open new possibilities for therapeutic intervention and diagnosis. Exosomes have indeed demonstrated promise as diagnostic biomarkers, particularly in identifying cardiac conditions such as atrial fibrillation (AF) and in the timely classification of high-risk patients with different forms of cardiomyopathy. In DCM, exosomes have been implicated in mediating pathological responses in cardiomyocytes, potentially exacerbating disease progression. Moreover, in RCM, AC, and HCM, exosomes present significant potential as diagnostic biomarkers and therapeutic targets, offering insights into disease pathogenesis and potential avenues for intervention. Understanding the influence of exosomes on disease progression and identifying the specific molecular pathways involved in cardiomyopathy pathogenesis may significantly advance diagnostic and treatment strategies. While key findings highlight the multifaceted role of exosomes in cardiomyopathy, they also emphasize the need for further research to elucidate molecular mechanisms and translate findings into clinical practice. This review highlights the evolving landscape of exosome research in cardiomyopathies and underscores the importance of ongoing investigations to harness the full potential of exosomes in improving patient outcomes.
Collapse
Affiliation(s)
- Shadiya Fawzul Ameer
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Manar Elsaka
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Summaiya Kahtoon
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Rabia-Illhem Kerzabi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar
| | - Gavino Casu
- Clinical and Interventional Cardiology, Sassari University Hospital, Sassari, Italy
| | - Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
3
|
Schoettler FI, Fatehi Hassanabad A, Jadli AS, Patel VB, Fedak PWM. Exploring the role of pericardial miRNAs and exosomes in modulating cardiac fibrosis. Cardiovasc Pathol 2024; 73:107671. [PMID: 38906439 DOI: 10.1016/j.carpath.2024.107671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/26/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
The potential of the pericardial space as a therapeutic delivery tool for cardiac fibrosis and heart failure (HF) treatment has yet to be elucidated. Recently, miRNAs and exosomes have been discovered to be present in human pericardial fluid (PF). Novel studies have shown characteristic human PF miRNA compositions associated with cardiac diseases and higher miRNA expressions in PF compared to peripheral blood. Five key studies found differentially expressed miRNAs in HF, angina pectoris, aortic stenosis, ventricular tachycardia, and congenital heart diseases with either atrial fibrillation or sinus rhythm. As miRNA-based therapeutics for cardiac fibrosis and HF showed promising results in several in vivo studies for multiple miRNAs, we hypothesize a potential role of miRNA-based therapeutics delivered through the pericardial cavity. This is underlined by the favorable results of the first phase 1b clinical trial in this emerging field. Presenting the first human miRNA antisense drug trial, inhibition of miR-132 by intravenous administration of a novel antisense oligonucleotide, CDR132L, established efficacy in reducing miR-132 in plasma samples in a dose-dependent manner. We screened the literature, provided an overview of the miRNAs and exosomes present in PF, and drew a connection to those miRNAs previously elucidated in cardiac fibrosis and HF. Further, we speculate about clinical implications and potential delivery methods.
Collapse
Affiliation(s)
- Friederike I Schoettler
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ali Fatehi Hassanabad
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anshul S Jadli
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cardiac Sciences, Section of Cardiac Surgery, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Carabetta N, Siracusa C, Leo I, Panuccio G, Strangio A, Sabatino J, Torella D, De Rosa S. Cardiomyopathies: The Role of Non-Coding RNAs. Noncoding RNA 2024; 10:53. [PMID: 39449507 PMCID: PMC11503404 DOI: 10.3390/ncrna10060053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiomyopathies are the structural and functional disorders of the myocardium. Etiopathogenesis is complex and involves an interplay of genetic, environmental, and lifestyle factors eventually leading to myocardial abnormalities. It is known that non-coding (Nc) RNAs, including micro (mi)-RNAs and long non-coding (lnc) RNAs, play a crucial role in regulating gene expression. Several studies have explored the role of miRNAs in the development of various pathologies, including heart diseases. In this review, we analyzed various patterns of ncRNAs expressed in the most common cardiomyopathies: dilated cardiomyopathy, hypertrophic cardiomyopathy and arrhythmogenic cardiomyopathy. Understanding the role of different ncRNAs implicated in cardiomyopathic processes may contribute to the identification of potential therapeutic targets and novel risk stratification models based on gene expression. The analysis of ncRNAs may also be helpful to unveil the molecular mechanisms subtended to these diseases.
Collapse
Affiliation(s)
- Nicole Carabetta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Chiara Siracusa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| | - Isabella Leo
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Giuseppe Panuccio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, 12200 Berlin, Germany
| | - Antonio Strangio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Jolanda Sabatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (I.L.); (G.P.); (A.S.); (J.S.); (D.T.)
| | - Salvatore De Rosa
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (N.C.); (C.S.)
| |
Collapse
|
5
|
Silva ED, Pereira-Sousa D, Ribeiro-Costa F, Cerqueira R, Enguita FJ, Gomes RN, Dias-Ferreira J, Pereira C, Castanheira A, Pinto-do-Ó P, Leite-Moreira AF, Nascimento DS. Pericardial Fluid Accumulates microRNAs That Regulate Heart Fibrosis after Myocardial Infarction. Int J Mol Sci 2024; 25:8329. [PMID: 39125899 PMCID: PMC11313565 DOI: 10.3390/ijms25158329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Pericardial fluid (PF) has been suggested as a reservoir of molecular targets that can be modulated for efficient repair after myocardial infarction (MI). Here, we set out to address the content of this biofluid after MI, namely in terms of microRNAs (miRs) that are important modulators of the cardiac pathological response. PF was collected during coronary artery bypass grafting (CABG) from two MI cohorts, patients with non-ST-segment elevation MI (NSTEMI) and patients with ST-segment elevation MI (STEMI), and a control group composed of patients with stable angina and without previous history of MI. The PF miR content was analyzed by small RNA sequencing, and its biological effect was assessed on human cardiac fibroblasts. PF accumulates fibrotic and inflammatory molecules in STEMI patients, namely causing the soluble suppression of tumorigenicity 2 (ST-2), which inversely correlates with the left ventricle ejection fraction. Although the PF of the three patient groups induce similar levels of fibroblast-to-myofibroblast activation in vitro, RNA sequencing revealed that PF from STEMI patients is particularly enriched not only in pro-fibrotic miRs but also anti-fibrotic miRs. Among those, miR-22-3p was herein found to inhibit TGF-β-induced human cardiac fibroblast activation in vitro. PF constitutes an attractive source for screening diagnostic/prognostic miRs and for unveiling novel therapeutic targets in cardiac fibrosis.
Collapse
Affiliation(s)
- Elsa D. Silva
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Daniel Pereira-Sousa
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Center for Translational Medicine (CTM), International Clinical Research Centre (ICRC), St. Anne’s Hospital, 60200 Brno, Czech Republic
- Department of Biomedical Sciences, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Francisco Ribeiro-Costa
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Rui Cerqueira
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, 4150-180 Porto, Portugal; (R.C.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Rita N. Gomes
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - João Dias-Ferreira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Cassilda Pereira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
- Center for Translational Health and Medical Biotechnology Research (TBIO)/Health Research Network (RISE-Health), ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
- Chemical and Biomolecular Sciences, School of Health (ESS), Polytechnic of Porto, 4200-465 Porto, Portugal
| | - Ana Castanheira
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
- INL—International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Perpétua Pinto-do-Ó
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| | - Adelino F. Leite-Moreira
- Cardiovascular R&D Center, Faculty of Medicine, University of Porto, 4150-180 Porto, Portugal; (R.C.)
| | - Diana S. Nascimento
- i3S—Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal; (E.D.S.); (F.R.-C.); (R.N.G.); (J.D.-F.); (C.P.); (A.C.); (P.P.-d.-Ó.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- INEB—Instituto Nacional de Engenharia Biomédica, University of Porto, 4200-135 Porto, Portugal
| |
Collapse
|
6
|
Fatehi Hassanabad A, El-Sherbini AH, Cherif IA, Ahmad B, Gonzalez ALF, Pelletier M, Fedak P, El-Diasty M. Pericardial fluid troponin in cardiac surgery. Clin Chim Acta 2024; 559:119722. [PMID: 38734224 DOI: 10.1016/j.cca.2024.119722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND AND OBJECTIVE Pericardial Fluid (PF) is a rich reservoir of biologically active factors. Due to its proximity to the heart, the biochemical structure of PF may reflect the pathological changes in the cardiac interstitial environment. This manuscript aimed to determine whether the PF level of cardiac troponins changes in patients undergoing cardiac surgery. METHODS This scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Medline, EMBASE, Cochrane, ClinicalTrials.gov, and Google Scholar databases were electronically searched for primary studies using the keywords "pericardial fluid," "troponin," and "cardiac surgery." The primary outcome of interest was changes in troponin levels within the PF preoperatively and postoperatively. Secondary outcomes of interest included comparisons between troponin level changes in the PF compared to plasma. RESULTS A total of 2901 manuscripts were screened through a title and abstract stage by two independent blinded reviewers. Of those, 2894 studies were excluded, and the remaining seven studies underwent a full-text review. Studies were excluded if they did not provide data or failed to meet inclusion criteria. Ultimately, six articles were included that discussed cardiac troponin levels within the PF in patients who had undergone cardiac surgery. Pericardial troponin concentration increased over time after surgery, and levels were significantly higher in PF compared to serum. All studies found that the type of operation did not affect these overall observations. CONCLUSION Our review of the literature suggest that the PF level of cardiac troponins increases in patients undergoing cardiac surgery, irrespective of the procedure type. However, these changes' exact pattern and clinical significance remain undefined.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | - Basil Ahmad
- School of Medicine, Queen's University, Kingston, ON, Canada
| | | | - Marc Pelletier
- Division of Cardiac Surgery, University Hospitals Cleveland Medical Centre, Cleveland, OH, USA
| | - Paul Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohammad El-Diasty
- Faculty of Health Sciences, Queen's University, Kingston, ON, Canada; Division of Cardiac Surgery, University Hospitals Cleveland Medical Centre, Cleveland, OH, USA.
| |
Collapse
|
7
|
Li H, Song S, Shi A, Hu S. Identification of Potential lncRNA-miRNA-mRNA Regulatory Network Contributing to Arrhythmogenic Right Ventricular Cardiomyopathy. J Cardiovasc Dev Dis 2024; 11:168. [PMID: 38921668 PMCID: PMC11204167 DOI: 10.3390/jcdd11060168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) can lead to sudden cardiac death and life-threatening heart failure. Due to its high fatality rate and limited therapies, the pathogenesis and diagnosis biomarker of ARVC needs to be explored urgently. This study aimed to explore the lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network in ARVC. The mRNA and lncRNA expression datasets obtained from the Gene Expression Omnibus (GEO) database were used to analyze differentially expressed mRNA (DEM) and lncRNA (DElnc) between ARVC and non-failing controls. Differentially expressed miRNAs (DEmiRs) were obtained from the previous profiling work. Using starBase to predict targets of DEmiRs and intersecting with DEM and DElnc, a ceRNA network of lncRNA-miRNA-mRNA was constructed. The DEM and DElnc were validated by real-time quantitative PCR in human heart tissue. Protein-protein interaction network and weighted gene co-expression network analyses were used to identify hub genes. A logistic regression model for ARVC diagnostic prediction was established with the hub genes and their ceRNA pairs in the network. A total of 448 DEMs (282 upregulated and 166 downregulated) were identified, mainly enriched in extracellular matrix and fibrosis-related GO terms and KEGG pathways, such as extracellular matrix organization and collagen fibril organization. Four mRNAs and two lncRNAs, including COL1A1, COL5A1, FBN1, BGN, XIST, and LINC00173 identified through the ceRNA network, were validated by real-time quantitative PCR in human heart tissue and used to construct a logistic regression model. Good ARVC diagnostic prediction performance for the model was shown in both the training set and the validation set. The potential lncRNA-miRNA-mRNA regulatory network and logistic regression model established in our study may provide promising diagnostic methods for ARVC.
Collapse
Affiliation(s)
| | | | | | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; (H.L.); (S.S.); (A.S.)
| |
Collapse
|
8
|
Toro V, Jutras-Beaudoin N, Boucherat O, Bonnet S, Provencher S, Potus F. Right Ventricle and Epigenetics: A Systematic Review. Cells 2023; 12:2693. [PMID: 38067121 PMCID: PMC10705252 DOI: 10.3390/cells12232693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
There is an increasing recognition of the crucial role of the right ventricle (RV) in determining the functional status and prognosis in multiple conditions. In the past decade, the epigenetic regulation (DNA methylation, histone modification, and non-coding RNAs) of gene expression has been raised as a critical determinant of RV development, RV physiological function, and RV pathological dysfunction. We thus aimed to perform an up-to-date review of the literature, gathering knowledge on the epigenetic modifications associated with RV function/dysfunction. Therefore, we conducted a systematic review of studies assessing the contribution of epigenetic modifications to RV development and/or the progression of RV dysfunction regardless of the causal pathology. English literature published on PubMed, between the inception of the study and 1 January 2023, was evaluated. Two authors independently evaluated whether studies met eligibility criteria before study results were extracted. Amongst the 817 studies screened, 109 studies were included in this review, including 69 that used human samples (e.g., RV myocardium, blood). While 37 proposed an epigenetic-based therapeutic intervention to improve RV function, none involved a clinical trial and 70 are descriptive. Surprisingly, we observed a substantial discrepancy between studies investigating the expression (up or down) and/or the contribution of the same epigenetic modifications on RV function or development. This exhaustive review of the literature summarizes the relevant epigenetic studies focusing on RV in human or preclinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | - François Potus
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec (CRIUCPQ), Québec, QC G1V 4G5, Canada; (V.T.); (N.J.-B.); (O.B.); (S.B.); (S.P.)
| |
Collapse
|
9
|
Suga N, Ikeda Y, Yoshikawa S, Taniguchi K, Sawamura H, Matsuda S. Non-Coding RNAs and Gut Microbiota in the Pathogenesis of Cardiac Arrhythmias: The Latest Update. Genes (Basel) 2023; 14:1736. [PMID: 37761875 PMCID: PMC10530369 DOI: 10.3390/genes14091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are indispensable for adjusting gene expression and genetic programming throughout development and for health as well as cardiovascular diseases. Cardiac arrhythmia is a frequent cardiovascular disease that has a complex pathology. Recent studies have shown that ncRNAs are also associated with cardiac arrhythmias. Many non-coding RNAs and/or genomes have been reported as genetic background for cardiac arrhythmias. In general, arrhythmias may be affected by several functional and structural changes in the myocardium of the heart. Therefore, ncRNAs might be indispensable regulators of gene expression in cardiomyocytes, which could play a dynamic role in regulating the stability of cardiac conduction and/or in the remodeling process. Although it remains almost unclear how ncRNAs regulate the expression of molecules for controlling cardiac conduction and/or the remodeling process, the gut microbiota and immune system within the intricate networks might be involved in the regulatory mechanisms. This study would discuss them and provide a research basis for ncRNA modulation, which might support the development of emerging innovative therapies against cardiac arrhythmias.
Collapse
Affiliation(s)
| | | | | | | | | | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan; (N.S.); (Y.I.); (S.Y.); (K.T.); (H.S.)
| |
Collapse
|
10
|
Shlyakhto EV. Scientific Basics of Personalized Medicine: Realities and Opportunities. HERALD OF THE RUSSIAN ACADEMY OF SCIENCES 2023; 92:671-682. [PMID: 36744158 PMCID: PMC9888328 DOI: 10.1134/s1019331622060041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/17/2022] [Accepted: 06/21/2022] [Indexed: 06/18/2023]
Abstract
Modern trends in the development of health care suggest its focus on the interests of the patient and its holistic nature, as well as deep penetration into all parts of health care information technology. The driving force behind the ongoing changes, of course, are scientific achievements, the importance of which in the development of new medical technologies and the creation of innovative diagnostic devices, as well as medicines, has grown significantly in recent years. These processes provide conditions for the introduction into clinical practice of a new model of medical care-personalized medicine, based on the choice of methods of diagnosis and treatment with account for the individual characteristics of the course of the disease, as well as the patient's lifestyle. Personalized medicine technologies, which involve the creation of an appropriate, often expensive, infrastructure of omics technologies, should ultimately lead to an increase in the efficiency, quality, and, most importantly, safety of medical care. In the Russian Federation, this area is actively developing in four world-class research centers, including the Almazov National Medical Research Center. The current state and prospects of research in the field of personalized medicine are discussed in this article, prepared by the author on the basis of his scientific report at a meeting of the Presidium of the Russian Academy of Sciences.
Collapse
Affiliation(s)
- E. V. Shlyakhto
- Almazov National Medical Research Center, Ministry of Health of Russia, St. Petersburg, Russia
| |
Collapse
|
11
|
Papageorgiou VE, Zegkos T, Efthimiadis G, Tsaklidis G. Analysis of digitalized ECG signals based on artificial intelligence and spectral analysis methods specialized in ARVC. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3644. [PMID: 36053812 DOI: 10.1002/cnm.3644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease that appears between the second and forth decade of a patient's life, being responsible for 20% of sudden cardiac deaths before the age of 35. The effective and punctual diagnosis of this disease based on electrocardiograms (ECGs) could have a vital role in reducing premature cardiovascular mortality. In our analysis, we first outline the digitalization process of paper-based ECG signals enhanced by a spatial filter aiming to eliminate dark regions in the dataset's images that do not correspond to ECG waveform, producing undesirable noise. Next, we propose the utilization of a low-complexity convolutional neural network for the detection of an arrhythmogenic heart disease, that has not been studied through the usage of deep learning methodology to date, achieving high classification accuracy, namely 99.98% training and 98.6% testing accuracy, on a disease the major identification criterion of which are infinitesimal millivolt variations in the ECG's morphology, in contrast with other arrhythmogenic abnormalities. Finally, by performing spectral analysis we investigate significant differentiations in the field of frequencies between normal ECGs and ECGs corresponding to patients suffering from ARVC. In 16 out of the 18 frequencies where we encounter statistically significant differentiations, the normal ECGs are characterized by greater normalized amplitudes compared to the abnormal ones. The overall research carried out in this article highlights the importance of integrating mathematical methods into the examination and effective diagnosis of various diseases, aiming to a substantial contribution to their successful treatment.
Collapse
Affiliation(s)
| | - Thomas Zegkos
- 1st Cardiology Department, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Efthimiadis
- 1st Cardiology Department, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Tsaklidis
- Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Piquer-Gil M, Domenech-Dauder S, Sepúlveda-Gómez M, Machí-Camacho C, Braza-Boïls A, Zorio E. Non Coding RNAs as Regulators of Wnt/β-Catenin and Hippo Pathways in Arrhythmogenic Cardiomyopathy. Biomedicines 2022; 10:2619. [PMID: 36289882 PMCID: PMC9599412 DOI: 10.3390/biomedicines10102619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 09/29/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy histologically characterized by the replacement of myocardium by fibrofatty infiltration, cardiomyocyte loss, and inflammation. ACM has been defined as a desmosomal disease because most of the mutations causing the disease are located in genes encoding desmosomal proteins. Interestingly, the instable structures of these intercellular junctions in this disease are closely related to a perturbed Wnt/β-catenin pathway. Imbalance in the Wnt/β-catenin signaling and also in the crosslinked Hippo pathway leads to the transcription of proadipogenic and profibrotic genes. Aiming to shed light on the mechanisms by which Wnt/β-catenin and Hippo pathways modulate the progression of the pathological ACM phenotype, the study of non-coding RNAs (ncRNAs) has emerged as a potential source of actionable targets. ncRNAs comprise a wide range of RNA species (short, large, linear, circular) which are able to finely tune gene expression and determine the final phenotype. Some share recognition sites, thus referred to as competing endogenous RNAs (ceRNAs), and ensure a coordinating action. Recent cancer research studies regarding the key role of ceRNAs in Wnt/β-catenin and Hippo pathways modulation pave the way to better understanding the molecular mechanisms underlying ACM.
Collapse
Affiliation(s)
- Marina Piquer-Gil
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
| | - Sofía Domenech-Dauder
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
| | - Marta Sepúlveda-Gómez
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
| | - Carla Machí-Camacho
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
| | - Aitana Braza-Boïls
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), 28015 Madrid, Spain
| | - Esther Zorio
- Unit of Inherited Cardiomyopathies and Sudden Death (CaFaMuSMe), Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Cardiovascular Diseases (CIBERCV), 28015 Madrid, Spain
- Cardiology Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
13
|
Identification of CeRNA Regulatory Networks in Atrial Fibrillation Using Nanodelivery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1046905. [PMID: 36212960 PMCID: PMC9536897 DOI: 10.1155/2022/1046905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
The initiation and maintenance of AF is a complex biological process that is the ultimate manifestation of many cardiovascular diseases. And the pathogenesis of atrial fibrillation (AF) is unclear. Therefore, this study aimed to find the potential competing endogenous RNAs (ceRNAs) network and molecular dysregulation mechanism associated with AF. GSE135445, GSE2240, and GSE68475 were obtained from the Gene Expression Omnibus (GEO). Differential analysis was utilized to identify the differentially expressed mRNAs, miRNAs, and lncRNAs between AF and sinus rhythms (SR). AF-associated mRNAs and nanomaterials were screened and their biological functions and KEGG signaling pathways were identified. Nanomaterials for targeted delivery are uniquely capable of localizing the delivery of therapeutics and diagnostics to diseased tissues. The target mRNAs and target lncRNAs of differentially expressed miRNAs were identified using TargetScan and LncBase databases. Finally, we constructed the ceRNAs network and its potential molecular regulatory mechanism. We obtained 643 AF-associated mRNAs. They were significantly involved in focal adhesion and the PI3K-Akt signaling pathway. Among the 16 differentially expressed miRNAs identified, 31 differentially expressed target mRNAs, as well as 5 differentially expressed target lncRNAs were identified. Among them, we obtained 2 ceRNAs networks (hsa-miR-125a-5p and hsa-let-7a-3p). The aberrant expression of network target genes in AF mainly activated the HIF-1 signaling pathway. We speculated that the interaction pairs of miR-125a-5p and let-7a-3p with target mRNAs and target lncRNAs may be involved in AF. Our findings have a positive influence on investigating the pathogenesis of AF and identifying potential therapeutic targets.
Collapse
|
14
|
Matveeva NA, Baulina NM, Kiselev IS, Titov BV, Favorova OO. MiRNA miR-375 as a Multifunctional Regulator of the Cardiovascular System. Mol Biol 2022. [DOI: 10.1134/s0026893322020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
lncRNA ADAMTS9-AS1/circFN1 Competitively Binds to miR-206 to Elevate the Expression of ACTB, Thus Inducing Hypertrophic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1450610. [PMID: 35401927 PMCID: PMC8989615 DOI: 10.1155/2022/1450610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/25/2021] [Accepted: 12/03/2021] [Indexed: 11/17/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease and can result in substantial disability. The current study explored the potentials of long noncoding RNA- (lncRNA-) circular RNA- (circRNA-) microRNA- (miRNA-) messenger RNA (mRNA) networks in HCM. Firstly, HCM-related microarray data were procured from the GEO database, with differentially expressed genes (DEGs) obtained. HCM-related target genes were retrieved in combination with GeneCards and CTD databases, and candidate target genes were subsequently obtained by intersection screening. Further, an interaction network diagram of candidate target genes was constructed using the STRING database, and the hub genes in the network were determined according to the core degree. The “ClusterProfiler” package of the R software was adopted for GO and KEGG analyses of candidate target genes, to analyze the potential molecular pathways in HCM. Next, upstream miRNA, lncRNA, and circRNA of ACTB were predicted with RNAInter, mirDIP, TargetScan, DIANA-LncBase, and StarBase databases, followed by construction of lncRNA/circRNA-miRNA-mRNA coexpression networks. ACTB, miR-206, circFN1, and ADAMTS9-AS1 expression in peripheral blood samples from HCM patients and normal healthy controls were detected using RT-qPCR. Moreover, rat cardiomyocyte cell lines H9c2 and HEK293 cells were selected for in vitro verification of competitive endogenous RNA (ceRNA) regulation mechanism. A total of 15 candidate target genes related to HCM were screened using the online databases. Further protein-protein interaction analysis identified ACTB as the hub gene for HCM. The targeted binding relationship between miR-206, miR-145-5p, miR-1-3p, and ACTB was found. Furthermore, ADAMTS9-AS1 and circFN1 were discovered as the upstream genes of miR-206. Moreover, ADAMTS9-AS1, circFN1, and ACTB were found to be poorly expressed, and miR-206 was highly expressed in HCM. In vitro experimentation further confirmed that ADAMTS9-AS1 and circFN1 could competitively bind to miR-206, thereby augmenting ACTB expression. Taken all, ADAMTS9-AS1/circFN1-miR-206-ACTB regulatory network may involve in HCM occurrence, providing a novel theoretical basis for in-depth understanding of mechanism of HCM.
Collapse
|