1
|
Uveges MK, Smith HS, Pereira S, Genetti C, McGuire AL, Beggs AH, Green RC, Holm IA. Family genetic risk communication and reverse cascade testing in the BabySeq project. Genet Med 2025; 27:101350. [PMID: 39731470 DOI: 10.1016/j.gim.2024.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024] Open
Abstract
PURPOSE Genomic sequencing of newborns can initiate disease surveillance and therapy for children and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and were identified as having a risk for an autosomal dominant disease. METHODS We conducted semistructured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely pathogenic variant associated with an autosomal dominant childhood- and/or adult-onset disease returned. We used directed content analysis to derive themes. RESULTS From 11 families, all first-degree relatives (n = 32, 100%), 29 second-degree relatives (76%), and 26 third-degree relatives (43%) were informed of their risk. All parents (n = 22, 69% of first-degree relatives), 4 (11%) second-degree relatives, and 1 (2%) third-degree relatives underwent cascade testing. Most parents preferred to handle risk communication themselves. Parents with positive cascade testing but no associated symptoms were less inclined to share findings with relatives but highly motivated to share results if the variant's associated disease severity was high, as perceived with adult-onset conditions. One new subtheme, family member traits, was identified and defined as a relative's propensity to anxiety/concern after risk communications but did not diminish risk communication. CONCLUSION Findings can inform more effective notification and testing practices for families of newborns at risk for hereditary genetic conditions.
Collapse
Affiliation(s)
- Melissa K Uveges
- Boston College, William F. Connell School of Nursing, Chestnut Hill, MA; Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA.
| | - Hadley Stevens Smith
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX; Precision Medicine Translational Research (PROMoTeR) Center, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA; Center for Bioethics, Harvard Medical School, Boston, MA
| | - Stacey Pereira
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Casie Genetti
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA
| | - Amy L McGuire
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX
| | - Alan H Beggs
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Robert C Green
- Harvard Medical School, Boston, MA; Mass General Brigham, Boston, MA; The Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ingrid A Holm
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Ma W, Wright DL, Parra O, Shah ND, Black CC, Baker ML, Khan WA. Identification of novel TTN gene variant in a patient exhibiting severe dilated cardiomyopathy co-occurring with acute fibrinoid organizing pneumonia. Am J Clin Pathol 2025; 163:102-108. [PMID: 39180762 DOI: 10.1093/ajcp/aqae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/08/2024] [Indexed: 08/26/2024] Open
Abstract
OBJECTIVES Dilated cardiomyopathy (DCM) is often hereditary, with 20% to 40% of nonischemic cases showing familial linkage, yet genetic testing is underused. This report describes an unreported pathogenic nonsense variant in the Titin (TTN) gene (NM_001267550.2:c.92603G>A) in a 24-year-old man with severe DCM and acute fibrinoid organizing pneumonia, highlighting a unique cardiopulmonary pathology. METHODS We conducted detailed gross, histopathologic, immunophenotypic, and exome-based DNA sequencing analysis in the workup of this case. We also included the patient's clinical and radiologic findings in our study. RESULTS With rapid clinical deterioration and complex comorbidities, including substance abuse and psychiatric conditions, which precluded transplantation, the patient's cardiac function progressively worsened. Autopsy findings included extreme cardiomegaly, biventricular hypertrophy, and acute and chronic pericarditis. Significant pulmonary pathology consistent with acute fibrinoid organizing pneumonia was also noted. Molecular testing confirmed a deleterious maternally inherited TTN variant that was absent in the sibling of the proband and the extant medical literature, highlighting its rarity and significance. CONCLUSIONS This case contributes to the ongoing body of work on the impact of TTN variants on DCM. It suggests a potential link between genetic variants and complex cardiac injury patterns, emphasizing the need for further investigation into the interplay between cardiomyopathy and pulmonary pathology.
Collapse
Affiliation(s)
- Weijie Ma
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, US
- Geisel School of Medicine at Dartmouth, Hanover, NH, US
| | - Dana L Wright
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, US
- Geisel School of Medicine at Dartmouth, Hanover, NH, US
| | - Ourania Parra
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, US
- Geisel School of Medicine at Dartmouth, Hanover, NH, US
| | - Nidhi D Shah
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, US
- Geisel School of Medicine at Dartmouth, Hanover, NH, US
| | - Candice C Black
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, US
- Geisel School of Medicine at Dartmouth, Hanover, NH, US
| | - Michael L Baker
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, US
- Geisel School of Medicine at Dartmouth, Hanover, NH, US
| | - Wahab A Khan
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, US
- Geisel School of Medicine at Dartmouth, Hanover, NH, US
| |
Collapse
|
3
|
Newman NA, Burke MA. Dilated Cardiomyopathy: A Genetic Journey from Past to Future. Int J Mol Sci 2024; 25:11460. [PMID: 39519012 PMCID: PMC11546582 DOI: 10.3390/ijms252111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by reduced systolic function and cardiac dilation. Cases without an identified secondary cause are classified as idiopathic dilated cardiomyopathy (IDC). Over the last 35 years, many cases of IDC have increasingly been recognized to be genetic in etiology with a core set of definitively causal genes in up to 40% of cases. While over 200 genes have been associated with DCM, the evidence supporting pathogenicity for most remains limited. Further, rapid advances in sequencing and bioinformatics have recently revealed a complex genetic spectrum ranging from monogenic to polygenic in DCM. These advances have also led to the discovery of causal and modifier genetic variants in secondary forms of DCM (e.g., alcohol-induced cardiomyopathy). Current guidelines recommend genetic counseling and screening, as well as endorsing a handful of genotype-specific therapies (e.g., device placement in LMNA cardiomyopathy). The future of genetics in DCM will likely involve polygenic risk scores, direct-to-consumer testing, and pharmacogenetics, requiring providers to have a thorough understanding of this rapidly developing field. Herein we outline three decades of genetics in DCM, summarize recent advances, and project possible future avenues for the field.
Collapse
Affiliation(s)
- Noah A. Newman
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael A. Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Anastasiou V, Papazoglou AS, Gossios T, Zegkos T, Daios S, Moysidis DV, Koutsiouroumpa O, Parcharidou D, Tziomalos G, Katranas S, Rouskas P, Didagelos M, Karamitsos T, Ziakas A, McKenna WJ, Kamperidis V, Efthimiadis GK. Prognostic implications of genotype findings in non-ischaemic dilated cardiomyopathy: A network meta-analysis. Eur J Heart Fail 2024; 26:2155-2168. [PMID: 39078390 DOI: 10.1002/ejhf.3403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS Evidence on the relative impact of diverse genetic backgrounds associated with non-ischaemic dilated cardiomyopathy (DCM) remains contradictory. This study sought to synthesize the available data regarding long-term outcomes of different gene groups in DCM. METHODS AND RESULTS Electronic databases were systematically screened to identify studies reporting prognostic data on pre-specified gene groups. Those included pathogenic/likely pathogenic (P/LP) variants, truncating titin variants (TTNtv), lamin A/C variants (LMNA), and desmosomal proteins. Outcomes were divided into composite adverse events (CAEs), malignant ventricular arrhythmic events (MVAEs) and heart failure events (HFEs). A total of 26 studies (n = 7255) were included in the meta-analysis and 6791 patients with genotyped DCM were analysed. Patients with P/LP variants had a higher risk for CAEs (odds ratio [OR] 2.10, 95% confidence interval [CI] 1.67-2.65), MVAEs (OR 1.86, 95% CI 1.52-2.26), and HFEs (OR 2.01, 95% CI 1.08-3.73) than genotype-negative patients. The presence of TTNtv was linked to a higher risk for CAEs (OR 1.78, 95% CI 1.20-2.63), but not MVAEs or HFEs. LMNA and desmosomal groups suffered a higher risk for CAEs, MVAEs, and HFEs compared to non-LMNA and non-desmosomal groups, respectively. When genes were indirectly compared, the presence of LMNA resulted in a more detrimental effect that TTNtv, with respect to all composite outcomes but no significant difference was found between LMNA and desmosomal genes. Desmosomal genes harboured a higher risk for MVAEs compared to TTNtv. CONCLUSIONS Different genetic substrates associated with DCM result in divergent natural histories. Routine utilization of genetic testing should be employed to refine risk stratification and inform therapeutic strategies in DCM.
Collapse
Affiliation(s)
- Vasileios Anastasiou
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Thomas Gossios
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Thomas Zegkos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stylianos Daios
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Ourania Koutsiouroumpa
- Evidence Synthesis Methods Team, Department of Primary Education, School of Education, University of Ioannina, Ioannina, Greece
| | - Despoina Parcharidou
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Tziomalos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sotiris Katranas
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pavlos Rouskas
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Matthaios Didagelos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodoros Karamitsos
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonios Ziakas
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - William J McKenna
- Institute of Cardiovascular Medicine, University College London, London, UK
| | - Vasileios Kamperidis
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios K Efthimiadis
- 1st Department of Cardiology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Claeys KG, Savarese M, Jonson PH, Goosens V, Topf A, Vihola A, Straub V, Udd B. A Titin Truncating Variant Causing a Dominant Myopathy With Cardiac Involvement in a Large Family: The Exception That Proves the Rule. Neurol Genet 2024; 10:e200185. [PMID: 39376211 PMCID: PMC11458131 DOI: 10.1212/nxg.0000000000200185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/24/2024] [Indexed: 10/09/2024]
Abstract
Background Titin truncating variants (TTNtvs) have been repeatedly reported as causative of recessive but not dominant skeletal muscle disorders. Objective To determine whether a single heterozygous nonsense variant in TTN can be responsible for the observed dominant myopathy in a large family. Methods In this case series, all available family members (8 affected and 6 healthy) belonging to a single family showing autosomal dominant inheritance were thoroughly examined clinically and genetically. Results All affected family members showed a similar clinical phenotype with a combination of cardiac and skeletal muscle involvement. Muscle imaging data revealed titin-compatible hallmarks. Genetic analysis revealed in all affected patients a nonsense TTN variant c.70051C>T p.(Arg23351*), in exon 327. RNA sequencing confirmed the lack of complete nonsense-mediated decay, and protein studies convincingly revealed expression of a shortened titin fragment of the expected size. Discussion We conclude that a single heterozygous nonsense variant in titin occasionally can cause a dominant myopathy as shown in this large family. Therefore, monoallelic titin truncating variants should be considered as possible disease-causing variants in unsolved patients with a dominant myopathy. However, large segregation studies, muscle imaging, and RNA and protein assays are needed to support the clinical and genetic interpretation.
Collapse
Affiliation(s)
- Kristl G Claeys
- From the Department of Neurology (K.G.C.), University Hospitals Leuven; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI), Belgium; Folkhälsan Research Center and Medicum (M.S., P.H.J., A.V., B.U.), University of Helsinki, Finland; Department of Radiology (V.G.), University Hospitals Leuven, Belgium; John Walton Muscular Dystrophy Research Centre (A.T., V.S.), Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Neuromuscular Research Center (B.U.), Department of Neurology, Tampere University and University Hospital; and Department of Neurology (B.U.), Vaasa Central Hospital, Finland
| | - Marco Savarese
- From the Department of Neurology (K.G.C.), University Hospitals Leuven; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI), Belgium; Folkhälsan Research Center and Medicum (M.S., P.H.J., A.V., B.U.), University of Helsinki, Finland; Department of Radiology (V.G.), University Hospitals Leuven, Belgium; John Walton Muscular Dystrophy Research Centre (A.T., V.S.), Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Neuromuscular Research Center (B.U.), Department of Neurology, Tampere University and University Hospital; and Department of Neurology (B.U.), Vaasa Central Hospital, Finland
| | - Per Harald Jonson
- From the Department of Neurology (K.G.C.), University Hospitals Leuven; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI), Belgium; Folkhälsan Research Center and Medicum (M.S., P.H.J., A.V., B.U.), University of Helsinki, Finland; Department of Radiology (V.G.), University Hospitals Leuven, Belgium; John Walton Muscular Dystrophy Research Centre (A.T., V.S.), Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Neuromuscular Research Center (B.U.), Department of Neurology, Tampere University and University Hospital; and Department of Neurology (B.U.), Vaasa Central Hospital, Finland
| | - Veerle Goosens
- From the Department of Neurology (K.G.C.), University Hospitals Leuven; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI), Belgium; Folkhälsan Research Center and Medicum (M.S., P.H.J., A.V., B.U.), University of Helsinki, Finland; Department of Radiology (V.G.), University Hospitals Leuven, Belgium; John Walton Muscular Dystrophy Research Centre (A.T., V.S.), Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Neuromuscular Research Center (B.U.), Department of Neurology, Tampere University and University Hospital; and Department of Neurology (B.U.), Vaasa Central Hospital, Finland
| | - Ana Topf
- From the Department of Neurology (K.G.C.), University Hospitals Leuven; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI), Belgium; Folkhälsan Research Center and Medicum (M.S., P.H.J., A.V., B.U.), University of Helsinki, Finland; Department of Radiology (V.G.), University Hospitals Leuven, Belgium; John Walton Muscular Dystrophy Research Centre (A.T., V.S.), Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Neuromuscular Research Center (B.U.), Department of Neurology, Tampere University and University Hospital; and Department of Neurology (B.U.), Vaasa Central Hospital, Finland
| | - Anna Vihola
- From the Department of Neurology (K.G.C.), University Hospitals Leuven; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI), Belgium; Folkhälsan Research Center and Medicum (M.S., P.H.J., A.V., B.U.), University of Helsinki, Finland; Department of Radiology (V.G.), University Hospitals Leuven, Belgium; John Walton Muscular Dystrophy Research Centre (A.T., V.S.), Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Neuromuscular Research Center (B.U.), Department of Neurology, Tampere University and University Hospital; and Department of Neurology (B.U.), Vaasa Central Hospital, Finland
| | - Volker Straub
- From the Department of Neurology (K.G.C.), University Hospitals Leuven; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI), Belgium; Folkhälsan Research Center and Medicum (M.S., P.H.J., A.V., B.U.), University of Helsinki, Finland; Department of Radiology (V.G.), University Hospitals Leuven, Belgium; John Walton Muscular Dystrophy Research Centre (A.T., V.S.), Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Neuromuscular Research Center (B.U.), Department of Neurology, Tampere University and University Hospital; and Department of Neurology (B.U.), Vaasa Central Hospital, Finland
| | - Bjarne Udd
- From the Department of Neurology (K.G.C.), University Hospitals Leuven; Department of Neurosciences (K.G.C.), Laboratory for Muscle Diseases and Neuropathies, KU Leuven, and Leuven Brain Institute (LBI), Belgium; Folkhälsan Research Center and Medicum (M.S., P.H.J., A.V., B.U.), University of Helsinki, Finland; Department of Radiology (V.G.), University Hospitals Leuven, Belgium; John Walton Muscular Dystrophy Research Centre (A.T., V.S.), Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Neuromuscular Research Center (B.U.), Department of Neurology, Tampere University and University Hospital; and Department of Neurology (B.U.), Vaasa Central Hospital, Finland
| |
Collapse
|
6
|
Li L, Yue P, Zhu J, Li L, Wang K, Yuan G, Song Y. TTN Mutation in Endometrial Endometrioid Carcinoma Is Associated with Poor Clinical Outcomes and High Tumor Mutation Burden. Cancer Invest 2024; 42:297-308. [PMID: 38666471 DOI: 10.1080/07357907.2024.2334249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/20/2024] [Indexed: 05/28/2024]
Abstract
Endometrioid endometrial carcinoma (EEC) stands as a prevalent gynecologic malignancy in developed regions. However, predicting relapse cases remains challenging, necessitating the identification of a novel biomarker for EEC relapse. The assessment of tumor mutational burden (TMB) is pivotal for immunotherapy in EEC patients. However, both whole-exome sequencing (WES) and targeted sequencing encountered application-related difficulties. In light of this, standardized and simplified techniques for TMB measurement are imperative. In this study, we employed WES on 25 EEC patients (12 relapsed cases and 13 non-relapsed cases) who accepted hysterectomy surgery (CHCAMS cohort). We additionally obtained a total of 391 tumor samples with clinicopathological features from TCGA website to broaden the study cohort. In the CHCAMS cohort, the TTN mutant group showed shorter progression-free survival (p < 0.001) and overall survival (p < 0.001) than TTN wild-type group. Additionally, we discovered that the number of TTN mutations per sample was significantly linked with TMB-WES in CHCAMS cohort and TCGA cohort (p < 0.05). And the number of TTN mutations per sample in POLE mutant group was greater than in the POLE wild-type group (p < 0.0001). In conclusion, TTN mutation may serve as a biomarker for EEC prognosis. TTN mutation is also associated with WES-TMB, and could be a simplified TMB measurement technique.
Collapse
Affiliation(s)
- Lihong Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pinli Yue
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiarun Zhu
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luyuan Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaipeng Wang
- Record Room, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangwen Yuan
- Record Room, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Song
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Greer OYO, Anandanadesan R, Shah NM, Price S, Johnson MR. Cardiogenic shock in pregnancy. BJOG 2024; 131:127-139. [PMID: 37794623 DOI: 10.1111/1471-0528.17645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/06/2023] [Accepted: 08/20/2023] [Indexed: 10/06/2023]
Abstract
Cardiac disease complicates 1%-4% of pregnancies globally, with a predominance in low and middle-income countries (LMICs). Increasing maternal age, rates of obesity, cardiovascular comorbidities, pre-eclampsia and gestational diabetes all contribute to acquired cardiovascular disease in pregnancy. Additionally, improved survival in congenital heart disease (CHD) has led to increasing numbers of women with CHD undergoing pregnancy. Implementation of individualised care plans formulated through pre-conception counselling and based on national and international guidance have contributed to improved clinical outcomes. However, there remains a significant proportion of women of reproductive age with no apparent comorbidities or risk factors that develop heart disease during pregnancy, with no indication for pre-conception counselling. The most extreme manifestation of cardiac disease is cardiogenic shock (CS), where the primary cardiac pathology results in inadequate cardiac output and hypoperfusion, and is associated with significant mortality and morbidity. Key to management is early recognition, intervention to treat any potentially reversible underlying pathology and supportive measures, up to and including mechanical circulatory support (MCS). In this narrative review we discuss recent developments in the classification of CS, and how these may be adapted to improve outcomes of pregnant women with, or at risk of developing, this potentially lethal condition.
Collapse
Affiliation(s)
- Orene Y O Greer
- Division of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Chelsea & Westminster NHS Foundation Trust, London, UK
| | - Rathai Anandanadesan
- Departments of Cardiology and Intensive Care, Royal Brompton & Harefield NHS Foundation Trust, London, UK
- Department of Critical Care, King's College Hospital, London, UK
| | - Nishel M Shah
- Division of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Chelsea & Westminster NHS Foundation Trust, London, UK
| | - Susanna Price
- Departments of Cardiology and Intensive Care, Royal Brompton & Harefield NHS Foundation Trust, London, UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Mark R Johnson
- Division of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Chelsea & Westminster NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Li S, Zeng X, Wang S, Xie X, Lan J. Association between MMP2 gene polymorphisms and dilated cardiomyopathy in a Chinese Han population. ESC Heart Fail 2023; 10:1793-1802. [PMID: 36866790 DOI: 10.1002/ehf2.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/31/2023] [Accepted: 02/12/2023] [Indexed: 03/04/2023] Open
Abstract
AIMS Dilated cardiomyopathy (DCM) belongs to the common types of cardiomyopathies. The pathogenesis remains unclear despite the fact that various genes have been found associated with DCM. MMP2 is a zinc-dependent and calcium-containing secreted endoproteinases, which could cleave a broad spectrum of substrates including extracellular matrix components and cytokines. It has proved to play an important role in the cardiovascular diseases. This study aimed to investigate the potential role of MMP2 gene polymorphisms in DCM susceptibility and prognosis in a Chinese Han population. METHODS AND RESULTS A total of 600 idiopathic DCM patients and 700 healthy controls were enrolled. Patients with contact information were followed up for a median period of 28 months. Three tagged single nucleotide polymorphisms (rs243865, rs2285052, and rs2285053) in the promoter of MMP2 gene were genotyped. A series of function analysis were conducted to illuminate the underlying mechanism. The frequency of rs243865-C allele was increased in DCM patients when compared with healthy controls (P = 0.001). Genotypic frequencies of rs243865 were associated with the susceptibility of DCM in the codominant, dominant, and overdominant models (P < 0.05). Besides, rs243865-C allele presented a correlation with the poor prognosis of DCM patients in both dominant (HR = 2.0, 95% confidence interval [CI] = 1.14-3.57, P = 0.017) and additive (HR = 1.85, 95% CI = 1.09-3.13, P = 0.02) model. The statistical significance remained after adjustment for sex, age, hypertension, diabetes, hyperlipidaemia, and smoking status. There were significant differences in left ventricular end-diastolic diameter and left ventricular ejection fraction between rs243865-CC and CT genotypes. Functional analysis indicated that rs243865-C allele increased luciferase activity and the mRNA expression level of MMP2 by facilitating ZNF354C binding. CONCLUSIONS Our study suggested that MMP2 gene polymorphisms were associated with DCM susceptibility and prognosis in the Chinese Han population.
Collapse
Affiliation(s)
- Shiyang Li
- Division of Cardiology, Panzhihua Central Hospital, Panzhihua, China
| | - Xiaobin Zeng
- Division of Cardiology, Panzhihua Central Hospital, Panzhihua, China
| | - Shihai Wang
- Division of Cardiology, Panzhihua Central Hospital, Panzhihua, China
| | - Xiaoshuang Xie
- Division of Cardiology, Panzhihua Central Hospital, Panzhihua, China
| | - Jianjun Lan
- Division of Cardiology, Panzhihua Central Hospital, Panzhihua, China
| |
Collapse
|
9
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Dai J, Li K, Huang M, Sun Y, Liu H, Li Z, Chen P, Wang H, Wu D, Chen Y, Xiao L, Wei H, Li R, Peng L, Yu T, Wang Y, Wang DW. The Involvement of ALPK3 in Hypertrophic Cardiomyopathy in East Asia. Front Med (Lausanne) 2022; 9:915649. [PMID: 35783621 PMCID: PMC9240616 DOI: 10.3389/fmed.2022.915649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Objective ALPK3 is associated with a recessive form of pediatric cardiomyopathy accompanied by musculoskeletal and craniofacial abnormalities. Heterozygous truncating variants in this gene (ALPK3tv) have recently been confirmed as a cause of autosomal dominant hypertrophic cardiomyopathy (HCM). Whether ALPK3 is also implicated in HCM in East Asia and the effect of missense variants in ALPK3 on HCM remains unresolved. Methods We compared the frequency of rare deleterious variants in ALPK3 in a study cohort comprised of 793 HCM cases of East Asian descent to that in the controls subset of Genome Aggregation Database (gnomAD). Gene burden test was used to assess this association. The involvement of these variants in HCM was further validated by independent cohort. The clinical characteristics and prognoses of these carriers were compared with sarcomere-positive and negative patients. Results Rare deleterious variants in ALPK3 were significantly enriched in HCM compared with gnomAD controls (truncating: 4/793 vs. 4/4523, P = 0.02; missense: 25/793 vs. 46/4523, P = 2.56e-5). Replication in an independent cohort provided more supporting evidence. Further comparisons revealed that ALPK3 carriers displayed more severe hypertrophy in interventricular septum (IVS) and apex, as well as greater maximal left ventricular wall thickness, relative to sarcomere negatives. Conclusion Heterozygous rare variants in ALPK3, both missense and truncating variants, are associated with HCM in East Asians.
Collapse
Affiliation(s)
- Jiaqi Dai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Li
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Man Huang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Sun
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Zongzhe Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyang Wu
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Yanghui Chen
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Xiao
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Wei
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Liyuan Peng
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Dao Wen Wang,
| |
Collapse
|
11
|
Micheu MM, Oprescu N, Popa-Fotea NM. In Silico Analysis of Novel Titin Non-Synonymous Missense Variants Detected by Targeted Next-Generation Sequencing in a Cohort of Romanian Index Patients with Hypertrophic Cardiomyopathy. ROMANIAN JOURNAL OF CARDIOLOGY 2021; 31:565-571. [DOI: 10.47803/rjc.2021.31.3.565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Abstract
Background and aim
Most of detected variants in cardiogenetic panels are still classified as variants of unknown significance, requiring supplementary analyses for a definite classification. Performing further in-depth studies on such vast number of candidates is unfeasible. We sought to prioritise the novel nonsynonymous missense variants identified in titin gene (TTN) in a cohort of Romanian index cases with hypertrophic cardiomyopathy (HCM).
Methods
45 unrelated probands with HCM were screened by targeted next generation sequencing (NGS) covering all TTN exons. A stepwise strategy was used to select and prioritize the candidate variants for subsequent investigation.
Results
Using rigorous bioinformatic filtering, 7 novel TTN nonsynonymous missense variants were identified and were the subject of in silico sequential analysis. 4 of the 7 variants were predicted to be possibly pathogenic by the Mendelian Clinically Applicable Pathogenicity (M-CAP) algorithm. Of these, three sequence variants (c.30392G>T, c.2518G>T, and c.49G>T) were also predicted to be destabilizing according to the second computational tool (TITINdb) and were designated as likely function-impacting.
Conclusions
Herein we presented our strategy to hand-pick the novel TTN missense variants to be considered for further experimental studies. By applying various in silico tools, we restricted the list of sequence variants to be investigated to those most likely to be disease-associated, and thus reducing the need to perform expensive and time-consuming additional studies.
Collapse
Affiliation(s)
| | - Nicoleta Oprescu
- Department of Cardiology, Emergency Clinical Hospital , Bucharest , Romania
| | - Nicoleta-Monica Popa-Fotea
- Department of Cardiology, Emergency Clinical Hospital , Bucharest , Romania
- „Carol Davila” University of Medicine and Pharmacy , Bucharest , Romania
| |
Collapse
|
12
|
RBM20 is a candidate gene for hypertrophic cardiomyopathy. Can J Cardiol 2021; 37:1751-1759. [PMID: 34333030 DOI: 10.1016/j.cjca.2021.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The genetic basis of a considerable fraction of hypertrophic cardiomyopathy (HCM) cases remains unknown. Whether the gene encoding RNA Binding Motif Protein 20 (RBM20) is implicated in HCM and the correlation of clinical characteristics of RBM20 heterozygotes with HCM remain unresolved. We aimed to investigate the association between RBM20 variants and HCM. METHODS We compared rare variants in the RBM20 gene by exome sequencing in 793 HCM patients and 414 healthy controls. Based on a case-control approach, we used SKAT-O to explore whether RBM20 is associated with HCM. The genetic distribution of RBM20 rare variants was then compared between HCM heterozygotes and dilated cardiomyopathy (DCM) heterozygotes. Clinical features and prognosis of RBM20 heterozygotes were compared with non-heterozygotes. RESULTS Gene-based association analysis implicated RBM20 as a susceptibility gene for developing HCM. Patients with RBM20 variants displayed a higher prevalence of sudden cardiac arrest (SCA) (6.7% vs. 0.9%, p = 0.001), increased sudden cardiac death (SCD) risk factor counts and impaired left ventricle systolic function. Further survival analysis revealed that RBM20 heterozygotes had higher incidences of resuscitated cardiac arrest, recurrent non-sustained ventricular tachycardia and malignant arrhythmias. Mendelian randomization suggested that RBM20 expression in left ventricle was causally associated with HCM and DCM with opposite effects. CONCLUSIONS This study identified RBM20 as a potential causal gene of HCM. RBM20 variants are associated with increased risk for SCA in HCM.
Collapse
|