1
|
Hu RT, Deng HW, Teng WB, Zhou SD, Ye ZM, Dong ZM, Qin C. ADORA3: A Key Player in the Pathogenesis of Intracranial Aneurysms and a Potential Diagnostic Biomarker. Mol Diagn Ther 2024; 28:225-235. [PMID: 38341835 DOI: 10.1007/s40291-024-00694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The effects of genes on the development of intracranial aneurysms (IAs) remain to be elucidated, and reliable blood biomarkers for diagnosing IAs are yet to be established. This study aimed to identify genes associated with IAs pathogenesis and explore their diagnostic value by analyzing IAs datasets, conducting vascular smooth muscle cells (VSMC) experiments, and performing blood detection. METHODS IAs datasets were collected and the differentially expressed genes were analyzed. The selected genes were validated in external datasets. Autophagy was induced in VSMC and the effect of selected genes was determined. The diagnostic value of selected gene on the IAs were explored using area under curve (AUC) analysis using IAs plasma samples. RESULTS Analysis of 61 samples (32 controls and 29 IAs tissues) revealed a significant increase in expression of ADORA3 compared with normal tissues using empirical Bayes methods of "limma" package; this was further validated by two external datasets. Additionally, induction of autophagy in VSMC lead to upregulation of ADORA3. Conversely, silencing ADORA3 suppressed VSMC proliferation and autophagy. Furthermore, analysis of an IAs blood sample dataset and clinical plasma samples demonstrated increased ADORA3 expression in patients with IA compared with normal subjects. The diagnostic value of blood ADORA3 expression in IAs was moderate when analyzing clinical samples (AUC: 0.756). Combining ADORA3 with IL2RB or CCR7 further enhanced the diagnostic ability for IAs, with the AUC value over 0.83. CONCLUSIONS High expression of ADORA3 is associated with IAs pathogenesis, likely through its promotion of VSMC autophagy. Furthermore, blood ADORA3 levels have the potential to serve as an auxiliary diagnostic biomarker for IAs.
Collapse
Affiliation(s)
- Rui-Ting Hu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Hao-Wei Deng
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Wen-Bin Teng
- Department of Neurology, Minzu Hospital of Guangxi Medical University, Nanning, 530001, China
| | - Shao-Dan Zhou
- Department of Neurology, Minzu Hospital of Guangxi Medical University, Nanning, 530001, China
| | - Zi-Ming Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Zi-Mei Dong
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, China.
| |
Collapse
|
2
|
Transcriptomic Studies on Intracranial Aneurysms. Genes (Basel) 2023; 14:genes14030613. [PMID: 36980884 PMCID: PMC10048068 DOI: 10.3390/genes14030613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
Intracranial aneurysm (IA) is a relatively common vascular malformation of an intracranial artery. In most cases, its presence is asymptomatic, but IA rupture causing subarachnoid hemorrhage is a life-threating condition with very high mortality and disability rates. Despite intensive studies, molecular mechanisms underlying the pathophysiology of IA formation, growth, and rupture remain poorly understood. There are no specific biomarkers of IA presence or rupture. Analysis of expression of mRNA and other RNA types offers a deeper insight into IA pathobiology. Here, we present results of published human studies on IA-focused transcriptomics.
Collapse
|
3
|
Lu T, He Y, Liu Z, Ma C, Chen S, Jia R, Duan L, Guo C, Liu Y, Guo D, Li T, He Y. A machine learning-derived gene signature for assessing rupture risk and circulatory immunopathologic landscape in patients with intracranial aneurysms. Front Cardiovasc Med 2023; 10:1075584. [PMID: 36844725 PMCID: PMC9950511 DOI: 10.3389/fcvm.2023.1075584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Background Intracranial aneurysm (IA) is an uncommon but severe subtype of cerebrovascular disease, with high mortality after aneurysm rupture. Current risk assessments are mainly based on clinical and imaging data. This study aimed to develop a molecular assay tool for optimizing the IA risk monitoring system. Methods Peripheral blood gene expression datasets obtained from the Gene Expression Omnibus were integrated into a discovery cohort. Weighted gene co-expression network analysis (WGCNA) and machine learning integrative approaches were utilized to construct a risk signature. QRT-PCR assay was performed to validate the model in an in-house cohort. Immunopathological features were estimated using bioinformatics methods. Results A four-gene machine learning-derived gene signature (MLDGS) was constructed for identifying patients with IA rupture. The AUC of MLDGS was 1.00 and 0.88 in discovery and validation cohorts, respectively. Calibration curve and decision curve analysis also confirmed the good performance of the MLDGS model. MLDGS was remarkably correlated with the circulating immunopathologic landscape. Higher MLDGS scores may represent higher abundance of innate immune cells, lower abundance of adaptive immune cells, and worse vascular stability. Conclusions The MLDGS provides a promising molecular assay panel for identifying patients with adverse immunopathological features and high risk of aneurysm rupture, contributing to advances in IA precision medicine.
Collapse
Affiliation(s)
- Taoyuan Lu
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Yanyan He
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chi Ma
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Song Chen
- Translational Research Institute, Henan Provincial People’s Hospital, Zhengzhou, Henan, China
| | - Rufeng Jia
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Lin Duan
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiying Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dehua Guo
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China
| | - Tianxiao Li
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China,Tianxiao Li,
| | - Yingkun He
- Department of Cerebrovascular Disease and Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, Henan, China,Henan International Joint Laboratory of Cerebrovascular Disease, Henan Provincial NeuroInterventional Engineering Research Center, Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, China,*Correspondence: Yingkun He,
| |
Collapse
|