1
|
Chu J, Yuan D, Lai Y, Ye W, Liu L, Lin H, Ping F, Zhu G, Chen F, Yao Y, Yan W, Liu X. Prognostic Implications of Changes in Total Physiological Atherosclerotic Burden in Patients With Coronary Artery Disease-A Serial QFR Study. Angiology 2025; 76:174-182. [PMID: 37994827 DOI: 10.1177/00033197231218616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The association between coronary physiological progression and clinical outcomes has not been investigated. A total of 421 patients who underwent serial coronary angiography at least 6 months apart were included. Total physiological atherosclerotic burden was characterized by sum of quantitative flow ratio in 3 epicardial vessels (3V-QFR). The relationships of the 3V-QFR and its longitudinal change (△3V-QFR) with major adverse cardiovascular events (MACE) were explored. 3V-QFR values derived from follow-up angiograms were slightly lower compared with baseline (2.85 [2.77, 2.90] vs 2.86 [2.80, 2.90], P < .001). The median △3V-QFR value was -0.01 (-0.05, 0.02). The multivariable models demonstrated that follow-up 3V-QFR and △3V-QFR were independently associated with MACE (both P < .05). Patients with both low follow-up 3V-QFR (≤2.78) and low △3V-QFR (≤-0.05) presented 3 times higher risk of MACE than those without (hazard ratio: 2.953, 95% confidence interval 1.428-6.104, P = .003). Furthermore, adding patient-level 3V-QFR and △3V-QFR to clinical model significantly improved the predictability for MACE. In conclusion, total physiological atherosclerotic burden and its progression can provide incremental prognostic value over clinical characteristics, supporting the use of coronary physiology in the evaluation of disease progression and for the identification of vulnerable patients.
Collapse
Affiliation(s)
- Jiapeng Chu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Deqiang Yuan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Lai
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen Ye
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Lin
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Ping
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guoqi Zhu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Chen
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yian Yao
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenwen Yan
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuebo Liu
- Department of Cardiology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Li K, Liu S, Wang J, Liu Z, Qi C. Analysis of Metabolic Risk Factors for Microcirculation Disorders Post-Percutaneous Coronary Intervention and Predictive Model Construction: A Study on Patients with Unstable Angina. Rev Cardiovasc Med 2025; 26:25739. [PMID: 39867198 PMCID: PMC11759962 DOI: 10.31083/rcm25739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 01/28/2025] Open
Abstract
Background This study aimed to analyze the metabolic risk factors for microcirculation disorders in patients with unstable angina (UA) after percutaneous coronary intervention (PCI), evaluating their predictive value for developing microcirculation disorders. Methods A single-center retrospective study design was used, which included 553 patients with UA who underwent PCI. The angiographic microcirculatory resistance (AMR) index was calculated based on coronary angiography data. Patients were divided into two groups according to their post-PCI AMR values: a post-PCI AMR ≤2.50 group and a post-PCI AMR >2.50 group. Variables were included in the multivariate regression model through univariate regression and variance inflation factor (VIF) screening. Subgroup analyses were conducted by sex to further evaluate the predictive value of selected variables in the overall sample. The total sample was randomly split into a 7:3 ratio for the training and validation sets. A nomogram based on the training sets was then constructed to visualize these predictions. The discrimination and calibration of the prediction model were evaluated using the receiver operating characteristic (ROC) curve and calibration curve. Results The post-PCI AMR >2.50 group had a higher percentage of females, increased incidence of diabetes, and elevated fasting blood glucose (FBG), glycated hemoglobin (HbA1c), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), and lipoprotein(a) (Lp(a)) levels (p < 0.05). Logistic regression analysis identified HbA1c, TG, LDL-C, and Lp(a) as independent predictors of elevated AMR post-PCI after adjusting for confounders. Subgroup analysis confirmed no significant interaction between the model and sex (p > 0.05). A nomogram was constructed based on the training set, with the area under the curve (AUC) for the ROC of 0.824 in the training set and 0.746 in the validation set. The calibration curves showed a good fit (training set: p = 0.219; validation set: p = 0.258). Conclusions HbA1c, TG, LDL-C, and Lp(a) levels are independent risk factors for microcirculation disorders in patients with UA post-PCI. The constructed nomogram provides good predictive accuracy.
Collapse
Affiliation(s)
- Kangming Li
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, 221000 Xuzhou, Jiangsu, China
| | - Shuang Liu
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, 221000 Xuzhou, Jiangsu, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, 221000 Xuzhou, Jiangsu, China
| | - Zhen Liu
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, 221000 Xuzhou, Jiangsu, China
| | - Chunmei Qi
- Department of Cardiology, The Second Affiliated Hospital of Xuzhou Medical University, 221000 Xuzhou, Jiangsu, China
| |
Collapse
|
3
|
Ye Z, Chen Q, Zhong J, Chen L, Chen L, Ye M, Yan Y, Chen L, Luo Y. Impact of diabetes on coronary physiology evaluated by quantitative flow ratio in patients who underwent percutaneous coronary intervention. J Diabetes Investig 2022; 13:1203-1212. [PMID: 35199479 PMCID: PMC9248432 DOI: 10.1111/jdi.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/13/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
Aims/Introduction There are mixed opinions on the influence of diabetes on the prognosis of patients receiving percutaneous coronary intervention (PCI). Therefore, in this study, the quantitative flow ratio (QFR), an emerging technology of functional evaluation, was used to explore the impact of diabetes on coronary physiology in patients who underwent PCI. Materials and Methods Patients who underwent successful PCI and a 1‐year angiographic follow up were retrospectively screened and analyzed by the QFR. Based on the presence or absence of diabetes, 677 enrolled patients (794 vessels) were classified into a diabetes group (211 patients, 261 vessels) and a non‐diabetes group (466 patients, 533 vessels). The results of QFR analysis and clinical outcomes were compared between the two groups. Results The two groups reached a similar level of post‐PCI QFR (0.95 ± 0.09 vs 0.96 ± 0.06, P = 0.292). However, at the 1‐year follow up, the QFR was lower (0.93 ± 0.11 vs 0.96 ± 0.07, P < 0.001), and the degree of QFR decline was more obvious (−0.024 ± 0.090 vs −0.008 ± 0.070, P = 0.023) in the diabetes group. Additionally, diabetes was independently associated with functional restenosis (odds ratio 2.164, 95% confidence interval 1.210–3.870, P = 0.009) and target vessel failure (odds ratio 2.654, 95% confidence interval 1.405–5.012, P = 0.003). Conclusion As evaluated by the QFR, patients with diabetes received less coronary physiological benefit from PCI, which was consistent with their clinical outcomes.
Collapse
Affiliation(s)
- Zhen Ye
- Department of Cardiology, Fujian Medical University Union Hospital, No. 29 Xin Quan Road, Fuzhou, Fujian, 350001, China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, 350001, China.,Fujian Heart Medical Center, Fuzhou, Fujian, 350001, China
| | - Qin Chen
- Department of Cardiology, Fujian Medical University Union Hospital, No. 29 Xin Quan Road, Fuzhou, Fujian, 350001, China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, 350001, China.,Fujian Heart Medical Center, Fuzhou, Fujian, 350001, China
| | - Jiaxin Zhong
- Department of Cardiology, Fujian Medical University Union Hospital, No. 29 Xin Quan Road, Fuzhou, Fujian, 350001, China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, 350001, China.,Fujian Heart Medical Center, Fuzhou, Fujian, 350001, China
| | - Long Chen
- Department of Cardiology, Fujian Medical University Union Hospital, No. 29 Xin Quan Road, Fuzhou, Fujian, 350001, China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, 350001, China.,Fujian Heart Medical Center, Fuzhou, Fujian, 350001, China
| | - Lihua Chen
- Department of Cardiology, Fujian Medical University Union Hospital, No. 29 Xin Quan Road, Fuzhou, Fujian, 350001, China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, 350001, China.,Fujian Heart Medical Center, Fuzhou, Fujian, 350001, China
| | - Mingfang Ye
- Department of Cardiology, Fujian Medical University Union Hospital, No. 29 Xin Quan Road, Fuzhou, Fujian, 350001, China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, 350001, China.,Fujian Heart Medical Center, Fuzhou, Fujian, 350001, China
| | - Yuanming Yan
- Department of Cardiology, Fujian Medical University Union Hospital, No. 29 Xin Quan Road, Fuzhou, Fujian, 350001, China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, 350001, China.,Fujian Heart Medical Center, Fuzhou, Fujian, 350001, China
| | - Lianglong Chen
- Department of Cardiology, Fujian Medical University Union Hospital, No. 29 Xin Quan Road, Fuzhou, Fujian, 350001, China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, 350001, China.,Fujian Heart Medical Center, Fuzhou, Fujian, 350001, China
| | - Yukun Luo
- Department of Cardiology, Fujian Medical University Union Hospital, No. 29 Xin Quan Road, Fuzhou, Fujian, 350001, China.,Fujian Institute of Coronary Heart Disease, Fuzhou, Fujian, 350001, China.,Fujian Heart Medical Center, Fuzhou, Fujian, 350001, China
| |
Collapse
|