1
|
Zhan XY, Chen H, Kong H, Meng T, Ye J, Liu Y, Ng MHL, Li L, Zhang Y, Huang J, Peng Q, Chen C, He Y, Yang M. Platelet dropping, bleeding and new treatment requirements in ITP patients after inactivated COVID-19 vaccination. Immunol Lett 2023; 264:56-63. [PMID: 38006954 DOI: 10.1016/j.imlet.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/27/2023]
Abstract
Significant decreases in platelet counts and ITP relapses have been documented in ITP patients receiving COVID-19 mRNA vaccines; however, the effect of the inactivated COVID-19 vaccine on ITP patients remains unclear. The present study aimed to investigate the impact of inactivated COVID-19 vaccines on ITP patients, with a focus on platelet dropping events, bleeding events/scores, and the requirement of a new round of treatment. A total of 118 ITP patients, with 97 chronic ITP and 21 persistent ITP, who received inactivated COVID-19 immunization were investigated retrospectively. Following vaccination (within 1 month), ITP patients reported platelet dropping (31.36 %), new bleeding events (22.88 %), increases in bleeding scores (23.73 %), and new treatment requirements (22.03 %). Among them, persistent ITP patients with disease duration of 3-12 months had higher ratios of the above adverse events (71.43 %, 57.14 %, 61.90 % and 71.43 %, respectively) than chronic ITP patients with duration > 1 year (22.68 %, 15.46 %, 15.46 % and 11.34 %, respectively); patients' disease duration was negatively correlated with platelet dropping events and new treatment requirements. Furthermore, logistic regression analysis also supported the above findings, revealing that persistent ITP patients had 9.40-9.70, 7.24-10.08, and 27.17-28.51 times incidence of having platelet dropping events, new bleeding events, and new treatment requirements after vaccination, respectively, when compared to chronic ITP patients. In conclusion, the present study demonstrates that after receiving inactivated COVID-19 vaccines, ITP patients may experience platelet dropping, which may lead to new bleeding events and the requirement of a new round of treatment for ITP recurrence. As a result, platelet level monitoring is crucial for ITP patients during the vaccination, especially those with persistent ITP.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hui Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Huimin Kong
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | - Jieyu Ye
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Margaret H L Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Liang Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yuming Zhang
- Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University (GDMU), Zhanjiang, China
| | - Jinqi Huang
- Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University (GDMU), Zhanjiang, China
| | - Qiang Peng
- The Third Affiliated Hospital, Shenzhen University, Shenzhen, China
| | - Chun Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Yulong He
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Mo Yang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China; Department of Hematology, Hematology Research Institute, Affiliated Hospital of Guangdong Medical University (GDMU), Zhanjiang, China.
| |
Collapse
|
2
|
Li T, Wu S, Tan J, Huang Z, Li L, Luo W, Wu Y, Lyu J, Liang X. Epidemiologic Characteristics of SARS-CoV-2 Omicron BA.5.1.3 Variant and the Protection Provided By Inactivated Vaccination. Viral Immunol 2023; 36:544-549. [PMID: 37669458 DOI: 10.1089/vim.2023.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Omicron variants have become the dominant SARS-CoV-2 variants due to their increased transmissibility and immune-escape ability. An outbreak of the Omicron variant BA.5.1.3 occurred in August 2022 in Sanya, China. Studying Omicron variants can promote the understanding of them and further contribute to managing the SARS-CoV-2 prevalence. This retrospective study analyzed the data of 258 patients with asymptomatic or mild SARS-CoV-2 admitted to the First Cabin Hospital of Sanya, China, between August 14 and September 4, 2022. The 258 patients comprised 128 males and 130 females with a mean age of 36.6 years and mean length of medical observation (LMO) of 10.1 days. Multiple linear regression analysis indicated that LMO was positively and negatively associated with age (p = 0.036) and vaccination status (p = 0.004), respectively. A Cox proportional-hazards model revealed that age (hazard ratio [HR] = 0.99, p = 0.029) and vaccination (HR = 1.23, p = 0.023) were risk and protective factors for LMO, respectively. Causal mediation analysis indicated that vaccination suppressed the effect of prolonging LMO caused by increasing age. Recovery times became longer with increasing age, which could be counterbalanced by vaccination. The present results indicate that vaccination interventions, even those developed through inactivated approaches, can still provide protection against Omicron variants.
Collapse
Affiliation(s)
- Taoyuan Li
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaorong Wu
- Department of Cardiovascular, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jiaxiong Tan
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhengyi Huang
- Department of Cardiovascular, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lijun Li
- Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wenzhi Luo
- Department of Pulmonology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yayun Wu
- Department of Infection Management, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Jun Lyu
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xujing Liang
- Department of Infectious Diseases, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Characteristics and outcomes of severe COVID-19 in hospitalized patients with cardiovascular diseases in the Amazonian region of Brazil: a retrospective cohort. Sci Rep 2022; 12:18472. [PMID: 36323818 PMCID: PMC9628483 DOI: 10.1038/s41598-022-23365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/31/2022] [Indexed: 12/02/2022] Open
Abstract
The northern region of Brazil is already vulnerable to other infectious diseases and it was no different in COVID-19. However, cardiovascular diseases still lead the causes of death. Thus, the objective of this study is to identify the clinical predictors and outcome of severe COVID-19 in hospitalized patients with and without CVD in this region of the Amazon. A retrospective cohort, referring to the notifications from January 1 to December 31, 2020, including cases confirmed by molecular testing. The study consisted of 9223 confirmed cases for COVID-19. Of these, 6011 (65.17%) did not have cardiovascular disease and 3212 (34.83%) had some cardiovascular disease. The significance of deaths was in the age group of < 1 to 59 CVD carriers (< 0.001). Predictor of mortality were invasive ventilation for patients with CVD, (OR 23,688 CI 18,180-30,866), followed by chronic kidney disease (OR 2442 CI 1568-3740), dyspnea (OR 2312 CI 1817-3941), respiratory distress (OR 1523 CI 1210-2919), cough (OR 1268 CI 1005-1599), Lower oxygen saturation 95% (OR 1281 CI 1039-1579), diabetes mellitus (OR 1267 CI 1050-1528) and age (OR 1051 CI 1044-1058). Carriers of CVD had a lower survival rate (< 0.0001). The order of the predictors of death differed among the non-carriers, as well as the high odds ratio in the predictors of CVD, only cough was an independent predictor. The age group under 59 years was associated with deaths. We also show the shorter survival in CVD carriers, as well as the higher cardiovascular morbidity rate than other studies in the literature.
Collapse
|
4
|
ÇİFTÇİ M. THE INCREASE IN THE SOCIAL UTILITY OF THE GERIATRIC POPULATION GAINED FROM THE HUMAN HEALTH WORKERS DURING THE PANDEMIC. KONURALP TIP DERGISI 2022. [DOI: 10.18521/ktd.1059885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Fricke-Galindo I, Buendia-Roldan I, Chavez-Galan L, Pérez-Rubio G, Hernández-Zenteno RDJ, Ramos-Martinez E, Zazueta-Márquez A, Reyes-Melendres F, Alarcón-Dionet A, Guzmán-Vargas J, Bravo-Gutiérrez OA, Quintero-Puerta T, Gutiérrez-Pérez IA, Ortega-Martínez A, Ambrocio-Ortiz E, Nava-Quiroz KJ, Bañuelos-Flores JL, Jaime-Capetillo ME, Mejía M, Rojas-Serrano J, Falfán-Valencia R. SERPINE1 rs6092 Variant Is Related to Plasma Coagulation Proteins in Patients with Severe COVID-19 from a Tertiary Care Hospital. BIOLOGY 2022; 11:biology11040595. [PMID: 35453794 PMCID: PMC9029072 DOI: 10.3390/biology11040595] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/17/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022]
Abstract
An impaired coagulation process has been described in patients with severe or critical coronavirus disease (COVID-19). Nevertheless, the implication of coagulation-related genes has not been explored. We aimed to evaluate the impact of F5 rs6025 and SERPINE1 rs6092 on invasive mechanical ventilation (IMV) requirement and the levels of coagulation proteins among patients with severe COVID-19. Four-hundred fifty-five patients with severe COVID-19 were genotyped using TaqMan assays. Coagulation-related proteins (P-Selectin, D-dimer, P-selectin glycoprotein ligand-1, tissue plasminogen activator [tPA], plasminogen activator inhibitor-1, and Factor IX) were assessed by cytometric bead arrays in one- and two-time determinations. Accordingly, SERPINE1 rs6092, P-Selectin (GG 385 pg/mL vs. AG+AA 632 pg/mL, p = 0.0037), and tPA (GG 1858 pg/mL vs. AG+AA 2546 pg/mL, p = 0.0284) levels were different. Patients carrying the CT F5-rs6025 genotype exhibited lower levels of factor IX (CC 17,136 pg/mL vs. CT 10,247 pg/mL, p = 0.0355). Coagulation proteins were also different among IMV patients than non-IMV. PSGL-1 levels were significantly increased in the late stage of COVID-19 (>10 days). The frequencies of F5 rs6025 and SERPINE1 rs6092 variants were not different among IMV and non-IMV. The SERPINE1 rs6092 variant is related to the impaired coagulation process in patients with COVID-19 severe.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Ivette Buendia-Roldan
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (A.A.-D.)
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico;
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | | | - Espiridión Ramos-Martinez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 06720, Mexico;
| | - Armando Zazueta-Márquez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Felipe Reyes-Melendres
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Aimé Alarcón-Dionet
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (I.B.-R.); (A.A.-D.)
| | - Javier Guzmán-Vargas
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Omar Andrés Bravo-Gutiérrez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Teresa Quintero-Puerta
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Ilse Adriana Gutiérrez-Pérez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Alejandro Ortega-Martínez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
| | - José Luis Bañuelos-Flores
- Clinical Laboratory Service, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.L.B.-F.); (M.E.J.-C.)
| | - María Esther Jaime-Capetillo
- Clinical Laboratory Service, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (J.L.B.-F.); (M.E.J.-C.)
| | - Mayra Mejía
- Interstitial Pulmonary Diseases and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 06720, Mexico; (M.M.); (J.R.-S.)
| | - Jorge Rojas-Serrano
- Interstitial Pulmonary Diseases and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 06720, Mexico; (M.M.); (J.R.-S.)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (I.F.-G.); (G.P.-R.); (A.Z.-M.); (F.R.-M.); (J.G.-V.); (O.A.B.-G.); (T.Q.-P.); (I.A.G.-P.); (A.O.-M.); (E.A.-O.); (K.J.N.-Q.)
- Correspondence: ; Tel.: +52-55-5487-1700 (ext. 5152)
| |
Collapse
|
6
|
De Marco C, Marascio N, Veneziano C, Biamonte F, Trecarichi EM, Santamaria G, Leviyang S, Liberto MC, Mazzitelli M, Quirino A, Longhini F, Torella D, Quattrone A, Matera G, Torti C, Costanzo FS, Viglietto G. Whole-genome analysis of SARS-CoV-2 in a 2020 infection cluster in a nursing home of Southern Italy. INFECTION, GENETICS AND EVOLUTION 2022; 99:105253. [PMID: 35189404 PMCID: PMC8855624 DOI: 10.1016/j.meegid.2022.105253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/16/2022] [Indexed: 12/23/2022]
Abstract
Background Nursing homes have represented important hotspots of viral spread during the initial wave of COVID-19 pandemics. The proximity of patients inside nursing homes allows investigate the dynamics of viral transmission, which may help understand SARS-Cov2 biology and spread. Methods SARS-CoV-2 viral genomes obtained from 46 patients infected in an outbreak inside a nursing home in Calabria region (South Italy) were analyzed by Next Generation Sequencing. We also investigated the evolution of viral genomes in 8 patients for which multiple swabs were available. Phylogenetic analysis and haplotype reconstruction were carried out with IQ-TREE software and RegressHaplo tool, respectively. Results All viral strains isolated from patients infected in the nursing home were classified as B.1 lineage, clade G. Overall, 14 major single nucleotide variations (SNVs) (frequency > 80%) and 12 minor SNVs (frequency comprised between 20% and 80%) were identified with reference to the Wuhan-H-1 sequence (NC_045512.2). All patients presented the same 6 major SNVs: D614G in the S gene; P4715L, ntC3037T (F924F) and S5398P in Orf1ab gene; ntC26681T (F53F) in the M gene; and ntC241T in the non-coding UTR region. However, haplotype reconstruction identified a founder haplotype (Hap A) in 36 patients carrying only the 6 common SNVs indicated above, and 10 other haplotypes (Hap B—K) derived from Hap A in the remaining 10 patients. Notably, no significant association between a specific viral haplotype and clinical parameters was found. Conclusion The predominant viral strain responsible for the infection in a nursing home in Calabria was the B.1 lineage (clade G). Viral genomes were classified into 11 haplotypes (Hap A in 36 patients, Hap B—K in the remaining patients).
Collapse
Affiliation(s)
- Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Italy; Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Italy
| | - Nadia Marascio
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Italy
| | - Claudia Veneziano
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Italy; Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Italy
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Italy; Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Italy
| | | | - Gianluca Santamaria
- Department of Medicine I Molecular Cardiology, Technical University of Munich, Munich, Germany
| | - Sivan Leviyang
- Department of Mathematics, Georgetown University, Washington, DC, USA
| | - Maria Carla Liberto
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Italy
| | | | - Angela Quirino
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Italy
| | - Federico Longhini
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Italy
| | - Aldo Quattrone
- Neuroscience Research Center, "Magna Graecia" University of Catanzaro, Italy
| | - Giovanni Matera
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, "Magna Graecia" University of Catanzaro, Italy
| | - Francesco Saverio Costanzo
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Italy; Interdepartmental Center of Services (CIS), Molecular Genomics and Pathology, "Magna Græcia" University of Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Italy; "Mater Domini" University Hospital of Catanzaro, Italy.
| |
Collapse
|