1
|
Viana-Mattioli S, Fonseca-Alaniz MH, Pinheiro-de-Sousa I, Junior RR, Mastella MH, de Carvalho Cavalli R, Sandrim VC. Plasma from hypertensive pregnancy patients induce endothelial dysfunction even under atheroprotective shear stress. Sci Rep 2025; 15:4675. [PMID: 39920219 PMCID: PMC11805971 DOI: 10.1038/s41598-025-88902-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025] Open
Abstract
Preeclampsia (PE) is a challenge in maternal healthcare due to its complex nature, characterized by high blood pressure, protein in the urine, and damage to various organs. There is evidence linking PE to endothelial dysfunction (ED), triggered by substances released from an oxygen-deprived placenta. Previous in vitro studies have not considered the impact of in vivo elements, such as the different patterns of blood flow, and laminar (LSS) vs. oscillatory (OSS) shear stress, on the development of ED. We investigated the impact of plasma from healthy pregnant women (HP), subjects with gestational hypertension (GH), and PE patients on global gene expression of human coronary endothelial cells (HCAECs) under LSS and OSS. Our findings revealed a unique transcriptional profile of endothelial cells induced by plasma incubation in LSS. Notably, OSS resulted in similar transcriptomes irrespective of plasma treatment. Under LSS, GH plasma resulted in a proliferative profile, whereas PE plasma was linked to pro-inflammatory and antioxidant profiles compared to HP plasma. Our findings demonstrate that shear stress levels influence the endothelial cell transcriptome in response to plasma from hypertensive pregnancy patients. Both PE and GH can induce endothelial dysfunction under atheroprotective LSS, with a more significant effect observed with PE-derived plasma.
Collapse
Affiliation(s)
- Sarah Viana-Mattioli
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubião Júnior, Botucatu, São Paulo, SP, Brazil
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Miriam Helena Fonseca-Alaniz
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Iguaracy Pinheiro-de-Sousa
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Ricardo Rosa Junior
- Laboratorio de Genetica e Cardiologia Molecular, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Moises Henrique Mastella
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubião Júnior, Botucatu, São Paulo, SP, Brazil
| | - Ricardo de Carvalho Cavalli
- Department of Gynecology and Obstetrics, Hospital das Clínicas, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, SP, Brazil
| | - Valeria Cristina Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP), Distrito Rubião Júnior, Botucatu, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Li Y, Xue X, Peng M, Zheng X, Guo S, Tao H. Phytochemical analysis and cardiovascular protective effect of four herbal medicines with functional food properties ( Four Huaiqing Chinese Medicine). Nat Prod Res 2024:1-7. [PMID: 39069726 DOI: 10.1080/14786419.2024.2381659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Rehmannia glutinosa Libosch, Achyranthes bidentata Bl. (A. bidentata), Dioscorea opposita Thunb, and Chrysanthemum morifolium Ramat (C. morifolium) are known as the 'Four Huaiqing Chinese Medicine' in China, which are used as materials for functional foods. In this paper, the constituents of Four Huaiqing Chinese Medicine were identified by UPLC-Q-TOF-MS/MS, and flavones and aromatic compounds are mainly responsible for these herbs. Moreover, C. morifolium exhibited the most significant effect in cobalt chloride-induced HUVECs injury, which could decrease cell apoptosis and the overproduction of ROS, lactic dehydrogenase (LD) and pyruvic acid, and increase the migration capacity of cells. Meanwhile, A. bidentata exhibited the most significant effect in isoproterenol-induced H9C2 cell injury, which could decrease the levels of ROS overproduction, BNP, NO, LD and pyruvic acid. Western blot revealed that C. morifolium and A. bidentata also could decrease the levels of bax/bcl-2 ratio, cleaved caspase-3, cytochrome c, HIF-1ɑ, GLUT1, HKII and PFKFB3, respectively.
Collapse
Affiliation(s)
- Yan Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaofei Xue
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Peng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolin Zheng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sen Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hailong Tao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Qi J, Liu H, Zhou Z, Jiang Y, Fan W, Hu J, Li J, Guo Z, Xie M, Huang W, Zhang Q, Hou S. Genome-wide association study identifies multiple loci influencing duck serum biochemical indicators in the laying period. Br Poult Sci 2024; 65:8-18. [PMID: 38284741 DOI: 10.1080/00071668.2023.2272982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/12/2023] [Indexed: 01/30/2024]
Abstract
1. Laying performance is an important economic trait in poultry. The blood is essential in transporting nutrients to the yolk and albumen and is necessary for egg formation.2. This study calculated the phenotypic relationships of duck egg quality, egg production efficiency and 22 serum parameters in the egg-laying stage. Using a variety of methodologies, a genome-wide association study (GWAS) was carried out to uncover the genetic foundations of the 22 serum biochemical markers of laying ducks.3. Spearman correlation coefficients between the egg production (226-329 per day) and the serum parameters were all weak, being less than 0.3. This analysis was done on 22 serum parameters, with total protein (TP), total triglycerides (TG), calcium (Ca) and phosphorous (P) having the highest correlation coefficients (r = 0.56-0.88). The coefficients for blood markers, such as total cholesterol (CHOL), total bilirubin (TBIL), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) varied from 0.70-0.94.4. Based on single-marker single-trait genome-wide analyses by a mixed linear model program of EMMAX, nine candidate genes were associated with enzyme traits (AST/ALT aspartate transaminase/glutamic-pyruvic transaminase, creatine kinase) and 19 candidate genes were associated with metabolism and protein-related serum parameters (glucose, total bile acid, uric acid (UA), albumin (ALB).5. The mvLMM (multivariate linear mixed model) of GEMMA software was used to carry out multiple trait integrated GWAS. Two candidate genes were found in the TP-TG-CA-P analysis and seven candidate genes in the CHOL_LDL-C_HDL-C_TBIL study. There was a high genetic correlation between the two groups.
Collapse
Affiliation(s)
- J Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - H Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Z Zhou
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Jiang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Fan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - J Hu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - J Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Z Guo
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - M Xie
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Huang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S Hou
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Xu Y, Xia D, Huang K, Liang M. Hypoxia-induced P4HA1 overexpression promotes post-ischemic angiogenesis by enhancing endothelial glycolysis through downregulating FBP1. J Transl Med 2024; 22:74. [PMID: 38238754 PMCID: PMC10797932 DOI: 10.1186/s12967-024-04872-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Angiogenesis is essential for tissue repair in ischemic diseases, relying on glycolysis as its primary energy source. Prolyl 4-hydroxylase subunit alpha 1 (P4HA1), the catalytic subunit of collagen prolyl 4-hydroxylase, is a glycolysis-related gene in cancers. However, its role in glycolysis-induced angiogenesis remains unclear. METHODS P4HA1 expression was modulated using adenoviruses. Endothelial angiogenesis was evaluated through 5-ethynyl-2'-deoxyuridine incorporation, transwell migration, and tube formation assays in vitro. In vivo experiments measured blood flow and capillary density in the hindlimb ischemia (HLI) model. Glycolytic stress assays, glucose uptake, lactate production, and quantitative reverse transcription-polymerase chain reaction (RT-PCR) were employed to assess glycolytic capacity. Transcriptome sequencing, validated by western blotting and RT-PCR, was utilized to determine underlying mechanisms. RESULTS P4HA1 was upregulated in endothelial cells under hypoxia and in the HLI model. P4HA1 overexpression promoted angiogenesis in vitro and in vivo, while its knockdown had the opposite effect. P4HA1 overexpression reduced cellular α-ketoglutarate (α-KG) levels by consuming α-KG during collagen hydroxylation. Downregulation of α-KG reduced the protein level of a DNA dioxygenase, ten-eleven translocation 2 (TET2), and its recruitment to the fructose-1,6-biphosphatase (FBP1) promoter, resulting in decreased FBP1 expression. The decrease in FBP1 enhanced glycolytic metabolism, thereby promoting endothelial angiogenesis. CONCLUSIONS Hypoxia-induced endothelial P4HA1 overexpression enhanced angiogenesis by promoting glycolytic metabolism reprogramming through the P4HA1/α-KG/TET2/FBP1 pathway. The study's findings underscore the significance of P4HA1 in post-ischemic angiogenesis, suggesting its therapeutic potential for post-ischemic tissue repair.
Collapse
Affiliation(s)
- Yating Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Xia
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Zhong H, Kong X, Zhang Y, Su Y, Zhang B, Zhu L, Chen H, Gou X, Zhang H. Microevolutionary mechanism of high-altitude adaptation in Tibetan chicken populations from an elevation gradient. Evol Appl 2022; 15:2100-2112. [PMID: 36540645 PMCID: PMC9753841 DOI: 10.1111/eva.13503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 12/23/2022] Open
Abstract
As an indigenous breed, the Tibetan chicken is found in highland regions and shows physiological adaptations to high altitude; however, the genetic changes that determine these adaptations remain elusive. We assumed that the microevolution of the Tibetan chicken occurred from lowland to highland regions with a continuous elevation range. In this study, we analyzed the genome of 188 chickens from lowland areas to the high-altitude regions of the Tibetan plateau with four altitudinal levels. Phylogenetic analysis revealed that Tibetan chickens are significantly different from other altitude chicken populations. Reconstruction of the demographic history showed that the migration and admixture events of the Tibetan chicken occurred at different times. The genome of the Tibetan chicken was also used to analyze positive selection pressure that is associated with high-altitude adaptation, revealing the well-known candidate gene that participates in oxygen binding (HBAD), as well as other novel potential genes (e.g., HRG and ANK2) that are related to blood coagulation and cardiovascular efficiency. Our study provides novel insights regarding the evolutionary history and microevolution mechanisms of the high-altitude adaptation in the Tibetan chicken.
Collapse
Affiliation(s)
- Hai‐An Zhong
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiao‐Yan Kong
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Ya‐Wen Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan‐Kai Su
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Bo Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Li Zhu
- College of Animal Science and TechnologyYunnan Agricultural UniversityKunmingChina
| | - Hua Chen
- Center for Computational GenomicsBeijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
| | - Xiao Gou
- School of Life Science and EngineeringFoshan UniversityGuangdongChina
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|