1
|
Gummadi R, Nori LP, Pindiprolu SKSS, Dasari N, Ahmad Z, Km M. Nanomaterials for delivery of drugs and genes to disrupt notch signaling pathway in breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04082-2. [PMID: 40392305 DOI: 10.1007/s00210-025-04082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 05/22/2025]
Abstract
Breast cancer, marked by considerable heterogeneity and intricate molecular subgroups, poses substantial obstacles to therapy. Epithelial-mesenchymal transition (EMT) and the existence of tumor-initiating cells (TICs) facilitate treatment resistance, metastasis, and worse prognosis. The Notch signaling system has garnered significant interest for its involvement in promoting epithelial-mesenchymal transition (EMT), maintaining tumor-initiating cells (TIC), and facilitating cancer progression, especially in truculent subtypes such as triple-negative breast cancer (TNBC). Targeting the Notch system represents a promising therapeutic strategy; nevertheless, traditional inhibitors frequently encounter obstacles, including inadequate selectivity and bioavailability. Nanocarrier-based drug delivery systems provide novel therapeutic strategies to these difficulties by augmenting the targeted delivery of Notch inhibitors and enhancing therapeutic efficacy. Solid lipid nanoparticles (SLNs), polymeric nanoparticles, lipid-based nanocarriers, and micelles exhibit promise in delivering Notch inhibitors to neoplastic cells, altering the Notch signaling pathway, and surmounting drug resistance. This review examines recent breakthroughs in nanocarrier systems aimed at the Notch signaling pathway in breast cancer, highlighting the therapeutic potential of integrating nanomedicine with Notch inhibition to disrupt epithelial-mesenchymal transition (EMT), tumor-initiating cells (TICs), and metastasis, thereby enhancing clinical outcomes.
Collapse
Affiliation(s)
- Ramakrishna Gummadi
- School of Pharmacy, Aditya University, Surampalem, 533437, India
- Department of Pharmaceutics, Shri Vishnu College of Pharmacy, Bhimavaram, India
| | | | | | - Nagasen Dasari
- School of Pharmacy, Aditya University, Surampalem, 533437, India
| | - Zubair Ahmad
- Centre of Bee Research and Its Products, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
- Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhasina Km
- Department of Pharmaceutical Analysis, Prime College of Pharmacy, Erattayal, Kodumbu, Palakkad, Kerala, 678551, India
| |
Collapse
|
2
|
Tran V, Nguyen N, Renkes S, Nguyen KT, Nguyen T, Alexandrakis G. Current and Near-Future Technologies to Quantify Nanoparticle Therapeutic Loading Efficiency and Surface Coating Efficiency with Targeted Moieties. Bioengineering (Basel) 2025; 12:362. [PMID: 40281721 PMCID: PMC12025210 DOI: 10.3390/bioengineering12040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/29/2025] Open
Abstract
Active targeting nanoparticles are a new generation of drug and gene delivery systems with the potential for greatly improved therapeutics delivery compared to conventional nanomedicine approaches. Despite their potential, the translation of active targeting nanoparticles faces challenges in production scale-up and batch consistency. Accurate quality control methods for nanoparticle therapeutic payload and coating characterization are critical for attaining the desired levels of batch repeatability, drug/gene loading efficiency, targeting molecule coating effectiveness, and safety profiles. Current limitations in nanoparticle characterization technologies, such as relying on ensemble-average analysis, pose challenges in assessing the drug/gene content and surface modification heterogeneity, which can greatly affect therapeutic outcomes. Single-molecule analysis technologies have emerged as a promising alternative, offering rich information on heterogeneity and stochastic variations between nanoparticle batches. This review first evaluates and identifies the challenges of traditional nanoparticle characterization tools that rely on indirect, bulk solution quantification methods. Subsequently, newly emerging characterization technologies are introduced for the quantification of therapeutic loading and targeted moiety coating efficiencies with single-nanoparticle resolution, to help guide researchers towards advancing the translation of active targeting nanoparticles into the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; (V.T.); (N.N.); (S.R.); (K.T.N.)
| | - George Alexandrakis
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010, USA; (V.T.); (N.N.); (S.R.); (K.T.N.)
| |
Collapse
|
3
|
Zhang S, Yu M, Li M, He M, Xie L, Huo F, Tian W. Notch Signaling Hydrogels Enable Rapid Vascularization and Promote Dental Pulp Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310285. [PMID: 39013081 PMCID: PMC11425206 DOI: 10.1002/advs.202310285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Indexed: 07/18/2024]
Abstract
Successful dental pulp regeneration is closely associated with rapid revascularization and angiogenesis, processes driven by the Jagged1(JAG1)/Notch signaling pathway. However, soluble Notch ligands have proven ineffective in activating this pathway. To overcome this limitation, a Notch signaling hydrogel is developed by indirectly immobilizing JAG1, aimed at precisely directing the regeneration of vascularized pulp tissue. This hydrogel displays favorable mechanical properties and biocompatibility. Cultivating dental pulp stem cells (DPSCs) and endothelial cells (ECs) on this hydrogel significantly upregulate Notch target genes and key proangiogenic markers expression. Three-dimensional (3D) culture assays demonstrate Notch signaling hydrogels improve effectiveness by facilitating encapsulated cell differentiation, enhancing their paracrine functions, and promoting capillary lumen formation. Furthermore, it effectively communicates with the Wnt signaling pathway, creating an odontoinductive microenvironment for pulp-dentin complex formation. In vivo studies show that short-term transplantation of the Notch signaling hydrogel accelerates angiogenesis, stabilizes capillary-like structures, and improves cell survival. Long-term transplantation further confirms its capability to promote the formation of pulp-like tissues rich in blood vessels and peripheral nerve-like structures. In conclusion, this study introduces a feasible and effective hydrogel tailored to specifically regulate the JAG1/Notch signaling pathway, showing potential in advancing regenerative strategies for dental pulp tissue.
Collapse
Affiliation(s)
- Siyuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Min He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Li Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Fangjun Huo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine Ministry of Education, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
4
|
Chintapula U, Yang S, Nguyen T, Li Y, Jaworski J, Dong H, Nguyen KT. Supramolecular Peptide Nanofiber/PLGA Nanocomposites for Enhancing Pulmonary Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56498-56509. [PMID: 36475601 DOI: 10.1021/acsami.2c15204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Effective drug delivery to pulmonary sites will benefit from the design and synthesis of novel drug delivery systems that can overcome various tissue and cellular barriers. Cell penetrating peptides (CPPs) have shown promise for intracellular delivery of various imaging probes and therapeutics. Although CPPs improve delivery efficacy to a certain extent, they still lack the scope of engineering to improve the payload capacity and protect the payload from the physiological environment in drug delivery applications. Inspired by recent advances of CPPs and CPP-functionalized nanoparticles, in this work, we demonstrate a novel nanocomposite consisting of fiber-forming supramolecular CPPs that are coated onto polylactic-glycolic acid (PLGA) nanoparticles to enhance pulmonary drug delivery. These nanocomposites show a threefold higher intracellular delivery of nanoparticles in various cells including primary lung epithelial cells, macrophages, and a 10-fold increase in endothelial cells compared to naked PLGA nanoparticles or a twofold increase compared to nanoparticles modified with traditional monomeric CPPs. Cell uptake studies suggest that nanocomposites likely enter cells through mixed macropinocytosis and passive energy-independent mechanisms, which is followed by endosomal escape within 24 h. Nanocomposites also showed potent mucus permeation. More importantly, freeze-drying and nebulizing formulated nanocomposite powder did not affect their physiochemical and biological activity, which further highlights the translative potential for use as a stable drug carrier for pulmonary drug delivery. We expect nanocomposites based on peptide nanofibers, and PLGA nanoparticles can be custom designed to encapsulate and deliver a wide range of therapeutics including nucleic acids, proteins, and small-molecule drugs when employed in inhalable systems to treat various pulmonary diseases.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, 500 UTA Blvd., Arlington, Texas 76010, United States
| | - Su Yang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Chemistry & Physics Building, Room 130, 700 Planetarium Place, Arlington, Texas 76019, United States
| | - Trinh Nguyen
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, 500 UTA Blvd., Arlington, Texas 76010, United States
| | - Yang Li
- Department of Biophysics, University of Texas at Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Justyn Jaworski
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, 500 UTA Blvd., Arlington, Texas 76010, United States
| | - He Dong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Chemistry & Physics Building, Room 130, 700 Planetarium Place, Arlington, Texas 76019, United States
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, 500 UTA Blvd., Arlington, Texas 76010, United States
| |
Collapse
|
5
|
Messerschmidt VL, Chintapula U, Bonetesta F, Laboy-Segarra S, Naderi A, Nguyen KT, Cao H, Mager E, Lee J. In vivo Evaluation of Non-viral NICD Plasmid-Loaded PLGA Nanoparticles in Developing Zebrafish to Improve Cardiac Functions. Front Physiol 2022; 13:819767. [PMID: 35283767 PMCID: PMC8906778 DOI: 10.3389/fphys.2022.819767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
In the era of the advanced nanomaterials, use of nanoparticles has been highlighted in biomedical research. However, the demonstration of DNA plasmid delivery with nanoparticles for in vivo gene delivery experiments must be carefully tested due to many possible issues, including toxicity. The purpose of the current study was to deliver a Notch Intracellular Domain (NICD)-encoded plasmid via poly(lactic-co-glycolic acid) (PLGA) nanoparticles and to investigate the toxic environmental side effects for an in vivo experiment. In addition, we demonstrated the target delivery to the endothelium, including the endocardial layer, which is challenging to manipulate gene expression for cardiac functions due to the beating heart and rapid blood pumping. For this study, we used a zebrafish animal model and exposed it to nanoparticles at varying concentrations to observe for specific malformations over time for toxic effects of PLGA nanoparticles as a delivery vehicle. Our nanoparticles caused significantly less malformations than the positive control, ZnO nanoparticles. Additionally, the NICD plasmid was successfully delivered by PLGA nanoparticles and significantly increased Notch signaling related genes. Furthermore, our image based deep-learning analysis approach evaluated that the antibody conjugated nanoparticles were successfully bound to the endocardium to overexpress Notch related genes and improve cardiac function such as ejection fraction, fractional shortening, and cardiac output. This research demonstrates that PLGA nanoparticle-mediated target delivery to upregulate Notch related genes which can be a potential therapeutic approach with minimum toxic effects.
Collapse
Affiliation(s)
- Victoria L Messerschmidt
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Fabrizio Bonetesta
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Samantha Laboy-Segarra
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Amir Naderi
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hung Cao
- Department of Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA, United States
| | - Edward Mager
- Department of Biological Sciences, University of North Texas, Denton, TX, United States
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|