1
|
Zhao K, Fonzo GA, Xie H, Oathes DJ, keller CJ, Carlisle NB, Etkin A, Garza-Villarreal EA, Zhang Y. Discriminative functional connectivity signature of cocaine use disorder links to rTMS treatment response. NATURE. MENTAL HEALTH 2024; 2:388-400. [PMID: 39279909 PMCID: PMC11394333 DOI: 10.1038/s44220-024-00209-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/23/2024] [Indexed: 09/18/2024]
Abstract
Cocaine use disorder (CUD) is prevalent, and repetitive transcranial magnetic stimulation (rTMS) shows promise in reducing cravings. However, the association between a consistent CUD-specific functional connectivity signature and treatment response remains unclear. Here we identify a validated functional connectivity signature from functional magnetic resonance imaging to discriminate CUD, with successful independent replication. We found increased connectivity within the visual and dorsal attention networks and between the frontoparietal control and ventral attention networks, alongside reduced connectivity between the default mode and limbic networks in patients with CUD. These connections were associated with drug use history and cognitive impairments. Using data from a randomized clinical trial, we also established the prognostic value of these functional connectivities for rTMS treatment outcomes in CUD, especially involving the frontoparietal control and default mode networks. Our findings reveal insights into the neurobiological mechanisms of CUD and link functional connectivity biomarkers with rTMS treatment response, offering potential targets for future therapeutic development.
Collapse
Affiliation(s)
- Kanhao Zhao
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Gregory A. Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Hua Xie
- Center for Neuroscience Research, Children’s National Hospital, Washington DC, USA
- George Washington University School of Medicine, Washington DC, USA
| | - Desmond J. Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Corey J. keller
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA, USA
| | | | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
2
|
Udin MH, Armstrong S, Kai A, Doyle S, Ionita CN, Pokharel S, Sharma UC. Lightweight preprocessing and template matching facilitate streamlined ischemic myocardial scar classification. J Med Imaging (Bellingham) 2024; 11:024503. [PMID: 38525295 PMCID: PMC10956816 DOI: 10.1117/1.jmi.11.2.024503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Purpose Ischemic myocardial scarring (IMS) is a common outcome of coronary artery disease that potentially leads to lethal arrythmias and heart failure. Late-gadolinium-enhanced cardiac magnetic resonance (CMR) imaging scans have served as the diagnostic bedrock for IMS, with recent advancements in machine learning enabling enhanced scar classification. However, the trade-off for these improvements is intensive computational and time demands. As a solution, we propose a combination of lightweight preprocessing (LWP) and template matching (TM) to streamline IMS classification. Approach CMR images from 279 patients (151 IMS, 128 control) were classified for IMS presence using two convolutional neural networks (CNNs) and TM, both with and without LWP. Evaluation metrics included accuracy, sensitivity, specificity, F1-score, area under the receiver operating characteristic curve (AUROC), and processing time. External testing dataset analysis encompassed patient-level classifications (PLCs) and a CNN versus TM classification comparison (CVTCC). Results LWP enhanced the speed of both CNNs (4.9x) and TM (21.9x). Furthermore, in the absence of LWP, TM outpaced CNNs by over 10x, while with LWP, TM was more than 100x faster. Additionally, TM performed similarly to the CNNs in accuracy, sensitivity, specificity, F1-score, and AUROC, with PLCs demonstrating improvements across all five metrics. Moreover, the CVTCC revealed a substantial 90.9% agreement. Conclusions Our results highlight the effectiveness of LWP and TM in streamlining IMS classification. Anticipated enhancements to LWP's region of interest (ROI) isolation and TM's ROI targeting are expected to boost accuracy, positioning them as a potential alternative to CNNs for IMS classification, supporting the need for further research.
Collapse
Affiliation(s)
- Michael H. Udin
- University at Buffalo, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
- Roswell Park Comprehensive Cancer Center, Department of Pathology, Buffalo, New York, United States
- University at Buffalo, Jacobs School of Medicine, Department of Medicine, Buffalo, New York, United States
| | - Sara Armstrong
- University at Buffalo, Jacobs School of Medicine, Department of Medicine, Buffalo, New York, United States
| | - Alice Kai
- University at Buffalo, Jacobs School of Medicine, Department of Medicine, Buffalo, New York, United States
| | - Scott Doyle
- University at Buffalo, Department of Biomedical Engineering, Buffalo, New York, United States
| | - Ciprian N. Ionita
- University at Buffalo, Department of Biomedical Engineering, Buffalo, New York, United States
- Canon Stroke and Vascular Research Center, Buffalo, New York, United States
| | - Saraswati Pokharel
- University at Buffalo, Department of Biomedical Engineering, Buffalo, New York, United States
- Roswell Park Comprehensive Cancer Center, Department of Pathology, Buffalo, New York, United States
| | - Umesh C. Sharma
- University at Buffalo, Jacobs School of Medicine, Department of Medicine, Buffalo, New York, United States
| |
Collapse
|
3
|
Zhao K, Fonzo GA, Xie H, Oathes DJ, Keller CJ, Carlisle N, Etkin A, Garza-Villarreal EA, Zhang Y. A generalizable functional connectivity signature characterizes brain dysfunction and links to rTMS treatment response in cocaine use disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.21.23288948. [PMID: 37162878 PMCID: PMC10168499 DOI: 10.1101/2023.04.21.23288948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Cocaine use disorder (CUD) is a prevalent substance abuse disorder, and repetitive transcranial magnetic stimulation (rTMS) has shown potential in reducing cocaine cravings. However, a robust and replicable biomarker for CUD phenotyping is lacking, and the association between CUD brain phenotypes and treatment response remains unclear. Our study successfully established a cross-validated functional connectivity signature for accurate CUD phenotyping, using resting-state functional magnetic resonance imaging from a discovery cohort, and demonstrated its generalizability in an independent replication cohort. We identified phenotyping FCs involving increased connectivity between the visual network and dorsal attention network, and between the frontoparietal control network and ventral attention network, as well as decreased connectivity between the default mode network and limbic network in CUD patients compared to healthy controls. These abnormal connections correlated significantly with other drug use history and cognitive dysfunctions, e.g., non-planning impulsivity. We further confirmed the prognostic potential of the identified discriminative FCs for rTMS treatment response in CUD patients and found that the treatment-predictive FCs mainly involved the frontoparietal control and default mode networks. Our findings provide new insights into the neurobiological mechanisms of CUD and the association between CUD phenotypes and rTMS treatment response, offering promising targets for future therapeutic development.
Collapse
Affiliation(s)
- Kanhao Zhao
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Gregory A. Fonzo
- Center for Psychedelic Research and Therapy, Department of Psychiatry and Behavioral Sciences, Dell Medical School, The University of Texas at Austin, TX, USA
| | - Hua Xie
- Center for Neuroscience Research, Children’s National Hospital, Washington, DC, USA
- George Washington University School of Medicine, Washington, DC, USA
| | - Desmond J. Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Corey J. Keller
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nancy Carlisle
- Department of Psychology, Lehigh University, Bethlehem, PA, USA
| | - Amit Etkin
- Alto Neuroscience, Inc., Los Altos, CA, USA
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México campus Juriquilla, Querétaro, Mexico
| | - Yu Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA, USA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|
4
|
Xing J, Wang S, Bilchick KC, Patel AR, Zhang M. JOINT DEEP LEARNING FOR IMPROVED MYOCARDIAL SCAR DETECTION FROM CARDIAC MRI. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2023; 2023:10.1109/isbi53787.2023.10230541. [PMID: 38523738 PMCID: PMC10959501 DOI: 10.1109/isbi53787.2023.10230541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Automated identification of myocardial scar from late gadolinium enhancement cardiac magnetic resonance images (LGE-CMR) is limited by image noise and artifacts such as those related to motion and partial volume effect. This paper presents a novel joint deep learning (JDL) framework that improves such tasks by utilizing simultaneously learned myocardium segmentations to eliminate negative effects from non-region-of-interest areas. In contrast to previous approaches treating scar detection and myocardium segmentation as separate or parallel tasks, our proposed method introduces a message passing module where the information of myocardium segmentation is directly passed to guide scar detectors. This newly designed network will efficiently exploit joint information from the two related tasks and use all available sources of myocardium segmentation to benefit scar identification. We demonstrate the effectiveness of JDL on LGE-CMR images for automated left ventricular (LV) scar detection, with great potential to improve risk prediction in patients with both ischemic and non-ischemic heart disease and to improve response rates to cardiac resynchronization therapy (CRT) for heart failure patients. Experimental results show that our proposed approach outperforms multiple state-of-the-art methods, including commonly used two-step segmentation-classification networks, and multitask learning schemes where subtasks are indirectly interacted.
Collapse
Affiliation(s)
- Jiarui Xing
- Department of Electrical and Computer Engineering, University of Virginia, USA
| | - Shuo Wang
- School of Medicine, University of Virginia Health System, USA
| | | | - Amit R Patel
- School of Medicine, University of Virginia Health System, USA
| | - Miaomiao Zhang
- Department of Electrical and Computer Engineering, University of Virginia, USA
- Department of Computer Science, University of Virginia, USA
| |
Collapse
|
5
|
Udin MH, Ionita CN, Pokharel S, Sharma UC. Automation of ischemic myocardial scar detection in cardiac magnetic resonance imaging of the left ventricle using machine learning. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12033:120333G. [PMID: 35999992 PMCID: PMC9394188 DOI: 10.1117/12.2612234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
PURPOSE Machine learning techniques can be applied to cardiac magnetic resonance imaging (CMR) scans in order to differentiate patients with and without ischemic myocardial scarring (IMS). However, processing the image data in the CMR scans requires manual work that takes a significant amount of time and expertise. We propose to develop and test an AI method to automatically identify IMS in CMR scans to streamline processing and reduce time costs. MATERIALS AND METHODS CMR scans from 170 patients (138 IMS & 32 without IMS as identified by a clinical expert) were processed using a multistep automatic image data selection algorithm. This algorithm consisted of cropping, circle detection, and supervised machine learning to isolate focused left ventricle image data. We used a ResNet-50 convolutional neural network to evaluate manual vs. automatic selection of left ventricle image data through calculating accuracy, sensitivity, specificity, F1 score, and area under the receiver operating characteristic curve (AUROC). RESULTS The algorithm accuracy, sensitivity, specificity, F1 score, and AUROC were 80.6%, 85.6%, 73.7%, 83.0%, and 0.837, respectively, when identifying IMS using manually selected left ventricle image data. With automatic selection of left ventricle image data, the same parameters were 78.5%, 86.0%, 70.7%, 79.7%, and 0.848, respectively. CONCLUSION Our proposed automatic image data selection algorithm provides a promising alternative to manual selection when there are time and expertise limitations. Automatic image data selection may also prove to be an important and necessary step toward integration of machine learning diagnosis and prognosis in clinical workflows.
Collapse
Affiliation(s)
- Michael H Udin
- Department of Biomedical Engineering, University at Buffalo, Buffalo NY 14228
- Canon Stroke and Vascular Research Center, Buffalo, NY 14203
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
- Department of Medicine, University at Buffalo Jacobs School of Medicine, Buffalo NY 14203
| | - Ciprian N Ionita
- Department of Biomedical Engineering, University at Buffalo, Buffalo NY 14228
- Canon Stroke and Vascular Research Center, Buffalo, NY 14203
| | - Saraswati Pokharel
- Department of Biomedical Engineering, University at Buffalo, Buffalo NY 14228
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | - Umesh C Sharma
- Department of Biomedical Engineering, University at Buffalo, Buffalo NY 14228
- Canon Stroke and Vascular Research Center, Buffalo, NY 14203
- Department of Medicine, University at Buffalo Jacobs School of Medicine, Buffalo NY 14203
| |
Collapse
|