1
|
Monteiro LM, Gouveia PJ, Vasques-Nóvoa F, Rosa S, Bardi I, Gomes RN, Correia-Santos S, Ricotti L, Vannozzi L, Guarnera D, Costa L, Leite-Moreira AM, Mendes-Ferreira P, Leite-Moreira AF, Perbellini F, Terracciano CM, Pinto-do-Ó P, Ferreira L, Nascimento DS. Nanoscale piezoelectric patches preserve electrical integrity of infarcted hearts. Mater Today Bio 2025; 32:101742. [PMID: 40290879 PMCID: PMC12033997 DOI: 10.1016/j.mtbio.2025.101742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/30/2025] Open
Abstract
Ischemic heart disease is the leading cause of death worldwide. Several approaches have been explored to restore cardiac function, however few investigated new strategies to improve electrical functional recovery. Herein, we have investigated the impact of piezoelectric patches (Piezo patches), capable of generating electric charges upon mechanical deformation, on rat cardiac slices, healthy and ischemic hearts (ex vivo), on infarcted mice (in vivo) and on healthy and infarcted pigs (in vivo). Piezo patches did not preclude cardiac slice contractility, while compared with electrically inert control patches. In addition, Piezo patches showed an adequate safety profile in a working heart model as no electrophysiologic alterations were detected in healthy hearts. Epicardial implantation of Piezo patches in acutely infarcted mice hearts significantly improved myocardial electrical integrity without disturbing systolic function. Moreover, Piezo patches partially prevented ischemia-related adverse cardiac remodeling, reducing left ventricular chamber dilatation and compensatory hypertrophy. Coherently, Piezo patch-implanted hearts revealed downregulation of genes associated with extracellular matrix remodeling. Importantly, in vivo implantation of Piezo patches in porcine hearts revealed to be electrically safe as no major effects in its electrophysiology were detected. Overall, the results presented here endorse Piezo patches as a promising therapeutic strategy to improve post-myocardial infarction structural and electrical remodeling.
Collapse
Affiliation(s)
- Luís M. Monteiro
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Pedro J. Gouveia
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
| | - Francisco Vasques-Nóvoa
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Susana Rosa
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
| | - Ifigeneia Bardi
- Imperial College London, National Heart & Lung Institute, London, United Kingdom
| | - Rita N. Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Simão Correia-Santos
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789, Coimbra, Portugal
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Liliana Costa
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - André M. Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Mendes-Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Adelino F. Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Filippo Perbellini
- Imperial College London, National Heart & Lung Institute, London, United Kingdom
| | | | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Lino Ferreira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197, Coimbra, Portugal
- Faculty of Medicine of the University of Coimbra, 3000-548, Coimbra, Portugal
| | - Diana S. Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Chu Q, Jiang X, Xiao Y. Rebuilding the myocardial microenvironment to enhance mesenchymal stem cells-mediated regeneration in ischemic heart disease. Front Bioeng Biotechnol 2024; 12:1468833. [PMID: 39372432 PMCID: PMC11452912 DOI: 10.3389/fbioe.2024.1468833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are naturally-derived regenerative materials that exhibit significant potential in regenerative medicine. Previous studies have demonstrated that MSCs-based therapy can improve heart function in ischemia-injured hearts, offering an exciting therapeutic intervention for myocardial ischemic infarction, a leading cause of worldwide mortality and disability. However, the efficacy of MSCs-based therapies is significantly disturbed by the myocardial microenvironment, which undergoes substantial changes following ischemic injury. After the ischemic injury, blood vessels become obstructed and damaged, and cardiomyocytes experience ischemic conditions. This activates the hypoxia-induced factor 1 (HIF-1) pathway, leading to the rapid production of several cytokines and chemokines, including vascular endothelial growth factor (VEGF) and stromal-derived factor 1 (SDF-1), which are crucial for angiogenesis, cell migration, and tissue repair, but it is not sustainable. MSCs respond to these cytokines and chemokines by homing to the injured site and participating in myocardial regeneration. However, the deteriorated microenvironment in the injured myocardium poses challenges for cell survival, interacting with MSCs, and constraining their homing, retention, and migration capabilities, thereby limiting their regenerative potential. This review discusses how the deteriorated microenvironment negatively affects the ability of MSCs to promote myocardial regeneration. Recent studies have shown that optimizing the microenvironment through the promotion of angiogenesis can significantly enhance the efficacy of MSCs in treating myocardial infarction. This approach harnesses the full therapeutic potential of MSCs-based therapies for ischemic heart disease.
Collapse
Affiliation(s)
- Qing Chu
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xin Jiang
- Department of Laboratory Medicine, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Innovation Institute for Integration of Medicine and Engineering, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Ying Xiao
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Department of Postgraduate, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Chen C, Li X, Hu Y, Chen Y, Wang H, Li X, Li X. Electrical stimulation promoting the angiogenesis in diabetic rat perforator flap through attenuating oxidative stress-mediated inflammation and apoptosis. PeerJ 2024; 12:e16856. [PMID: 38313008 PMCID: PMC10838069 DOI: 10.7717/peerj.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Background Skin flap transplantation is one of the effective methods to treat the diabetes-related foot ulceration, but the intrinsic damage to vessels in diabetes mellitus (DM) leads to the necrosis of skin flaps. Therefore, the discovery of a non-invasive and effective approach for promoting the survival of flaps is of the utmost importance. Electrical stimulation (ES) promotes angiogenesis and increases the proliferation, migration, and elongation of endothelial cells, thus being a potential effective method to improve flap survival. Objective The purpose of this study was to elucidate the mechanism used by ES to effectively restore the impaired function of endothelial cells caused by diabetes. Methods A total of 79 adult male Sprague-Dawley rats were used in this study. Gene and protein expression was assessed by PCR and western blotting, respectively. Immunohistochemistry and hematoxylin-eosin staining were performed to evaluate the morphology and density of the microvessels in the flap. Results The optimal duration for preconditioning the flap with ES was 7 days. The flap survival area percentage and microvessels density in the DMES group were markedly increased compared to the DM group. VEGF, MMP2, and MMP9 protein expression was significantly upregulated. ROS intensity was significantly decreased and GSH concentration was increased. The expression of IL-1β, MCP‑1, cleaved caspase-3, and Bax were downregulated in the DMES group, while TGF-β expression was upregulated. Conclusions ES improves the angiogenesis in diabetic ischemic skin flaps by attenuating oxidative stress-mediated inflammation and apoptosis, eventually increasing their viability.
Collapse
Affiliation(s)
- Cong Chen
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolu Li
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yong Hu
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yuan Chen
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Hongrui Wang
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xian Li
- Second Hospital of Shandong University, Jinan, Shandong, China
| | - Xiucun Li
- Second Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|