1
|
Iwata A, Chelvanambi S, Asano T, Whelan M, Nakamura Y, Aikawa E, Sasaki Y, Aikawa M. Gene expression profiles of precursor cells identify compounds that reduce NRP1 surface expression in macrophages: Implication for drug repositioning for COVID-19. Front Cardiovasc Med 2024; 11:1438396. [PMID: 39512370 PMCID: PMC11541348 DOI: 10.3389/fcvm.2024.1438396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/23/2024] [Indexed: 11/15/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is transitioning from a pandemic to an endemic phase through recurring mutations. Initial efforts focused on developing strategies to mitigate infection of lung epithelial cells which are the primary targets of the SARS-CoV-2 virus using the affinity of the spike protein to human ACE2 receptor. SARS-CoV-2, however, infects additional cell types present in the lung such as macrophages through the alternate entry receptor Neuropilin 1 (NRP1). Developing novel therapeutic strategies to prevent SARS-CoV-2 infection of cells crucial for immunosurveillance could thus be integral to treat post-acute sequelae of COVID-19 (PASC). Since traditional drug development process takes a long time, it is imperative to establish new strategies that can be rapidly deployed to combat the dynamic nature of COVID-19 evolution and to contribute to prevention of future pandemics. We obtained the gene expression profiles of THP-1 monocytes from L1000-based Connectivity Map using CLUE, cloud- based software platform for the analysis of perturbational datasets to identify compounds that could reduce the expression level of NRP1. Out of 33,590 compounds, we analyzed the profiles of 45 compounds for their ability to reduce NRP1 expression. We selected the top five small molecule inhibitors predicted to decrease the expression of NRP1 for validation studies. All five selected compounds showed low cytotoxicity at tested doses and their ability to reduce NRP1 surface expression was evaluated in THP-1 monocytes, THP-1-derived macrophage like cells and human peripheral blood mononuclear cell (PBMC)-derived primary macrophages. Five compounds with the largest predicted reduction of NRP1 expression decreased macrophage NRP1 surface expression measured using flow cytometry and fluorescent microscopy assays in both cell line and primary macrophages. Using our computational approach, we identified 45 compounds that could potentially decrease NRP1 surface expression in macrophages based on their effect on THP-1 monocytes. Validation studies showed that such an approach can help to identify compounds for drug repositioning in target cells that are absent in the L1000 database. Our proposed approach can be applicable for the rapid compound exploration to combat novel cell types that SARS-CoV-2 targets for infection and could provide molecular bases for the development of new drugs.
Collapse
Affiliation(s)
- Akira Iwata
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarvesh Chelvanambi
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Takaharu Asano
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mary Whelan
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yuto Nakamura
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yusuke Sasaki
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Masanori Aikawa
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Center for Excellence in Vascular Biology, Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Liu Z, Liang X, Zhang Y, Deng W, Wang Y, Lu Z, Liu Q, Wei L. Drug Repurposing: Research Progress of Niclosamide and Its Derivatives on Antibacterial Activity. Infect Drug Resist 2024; 17:4539-4556. [PMID: 39464831 PMCID: PMC11505561 DOI: 10.2147/idr.s490998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
The development of antibiotic resistance complicates the treatment of infectious diseases and is a global public health threat. However, drug repurposing can address this resistance issue and reduce research and development costs. Niclosamide is a salicylanilide compound approved by the Food and Drug Administration (FDA), and it has been used clinically for treating parasitic infections for many years. Recent studies have shown that niclosamide can inhibit bacterial and fungus activity by affecting the quorum sensing system, biofilm formation, cell membrane potential, and other mechanisms. Here, we discuss recent advances in the antimicrobial applications of niclosamide and its derivatives to provide new perspectives in treating infectious diseases.
Collapse
Affiliation(s)
- Zhihong Liu
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| | - Xiaofang Liang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Yu Zhang
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Wenbo Deng
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu, People’s Republic of China
| | - Yulin Wang
- Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zhangping Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| | - Qianqian Liu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| | - Lianhua Wei
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, Gansu, People’s Republic of China
| |
Collapse
|
3
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Adhikari R, Shiwakoti S, Kim E, Choi IJ, Park SH, Ko JY, Chang K, Oak MH. Niclosamide Inhibits Aortic Valve Interstitial Cell Calcification by Interfering with the GSK-3β/β-Catenin Signaling Pathway. Biomol Ther (Seoul) 2023; 31:515-525. [PMID: 37366053 PMCID: PMC10468423 DOI: 10.4062/biomolther.2022.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/07/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
The most common heart valve disorder is calcific aortic valve stenosis (CAVS), which is characterized by a narrowing of the aortic valve. Treatment with the drug molecule, in addition to surgical and transcatheter valve replacement, is the primary focus of researchers in this field. The purpose of this study is to determine whether niclosamide can reduce calcification in aortic valve interstitial cells (VICs). To induce calcification, cells were treated with a pro-calcifying medium (PCM). Different concentrations of niclosamide were added to the PCM-treated cells, and the level of calcification, mRNA, and protein expression of calcification markers was measured. Niclosamide inhibited aortic valve calcification as observed from reduced alizarin red s staining in niclosamide treated VICs and also decreased the mRNA and protein expressions of calcification-specific markers: runt-related transcription factor 2 and osteopontin. Niclosamide also reduced the formation of reactive oxygen species, NADPH oxidase activity and the expression of Nox2 and p22phox. Furthermore, in calcified VICs, niclosamide inhibited the expression of β-catenin and phosphorylated glycogen synthase kinase (GSK-3β), as well as the phosphorylation of AKT and ERK. Taken together, our findings suggest that niclosamide may alleviate PCM-induced calcification, at least in part, by targeting oxidative stress mediated GSK-3β/β-catenin signaling pathway via inhibiting activation of AKT and ERK, and may be a potential treatment for CAVS.
Collapse
Affiliation(s)
- Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Saugat Shiwakoti
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Eunmin Kim
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ik Jun Choi
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sin-Hee Park
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ju-Young Ko
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| | - Kiyuk Chang
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Republic of Korea
| |
Collapse
|
5
|
Pan W, Jie W, Huang H. Vascular calcification: Molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e200. [PMID: 36620697 PMCID: PMC9811665 DOI: 10.1002/mco2.200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023] Open
Abstract
Vascular calcification (VC) is recognized as a pathological vascular disorder associated with various diseases, such as atherosclerosis, hypertension, aortic valve stenosis, coronary artery disease, diabetes mellitus, as well as chronic kidney disease. Therefore, it is a life-threatening state for human health. There were several studies targeting mechanisms of VC that revealed the importance of vascular smooth muscle cells transdifferentiating, phosphorous and calcium milieu, as well as matrix vesicles on the progress of VC. However, the underlying molecular mechanisms of VC need to be elucidated. Though there is no acknowledged effective therapeutic strategy to reverse or cure VC clinically, recent evidence has proved that VC is not a passive irreversible comorbidity but an active process regulated by many factors. Some available approaches targeting the underlying molecular mechanism provide promising prospects for the therapy of VC. This review aims to summarize the novel findings on molecular mechanisms and therapeutic interventions of VC, including the role of inflammatory responses, endoplasmic reticulum stress, mitochondrial dysfunction, iron homeostasis, metabolic imbalance, and some related signaling pathways on VC progression. We also conclude some recent studies on controversial interventions in the clinical practice of VC, such as calcium channel blockers, renin-angiotensin system inhibitions, statins, bisphosphonates, denosumab, vitamins, and ion conditioning agents.
Collapse
Affiliation(s)
- Wei Pan
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Wei Jie
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| | - Hui Huang
- Department of Cardiology, the Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdongChina
- Joint Laboratory of Guangdong‐Hong Kong‐Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic DiseaseSun Yat‐sen UniversityShenzhenGuangdongChina
| |
Collapse
|
6
|
Chaffey L, Roberti A, Greaves DR. Drug repurposing in cardiovascular inflammation: Successes, failures, and future opportunities. Front Pharmacol 2022; 13:1046406. [PMID: 36339576 PMCID: PMC9634418 DOI: 10.3389/fphar.2022.1046406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022] Open
Abstract
Drug repurposing is an attractive, pragmatic approach to drug discovery that has yielded success across medical fields over the years. The use of existing medicines for novel indications enables dramatically reduced development costs and timescales compared with de novo drug discovery and is therefore a promising strategy in cardiovascular disease, where new drug approvals lag significantly behind that of other fields. Extensive evidence from pre-clinical and clinical studies show that chronic inflammation is a driver of pathology in cardiovascular disease, and many efforts have been made to target cardiovascular inflammation therapeutically. This approach has been met with significant challenges however, namely off-target effects associated with broad-spectrum immunosuppression, particularly in long-term conditions such as cardiovascular disease. Nevertheless, multiple anti-inflammatory medicines have been assessed for efficacy in cardiovascular clinical trials, with most of these being repurposed from their original indications in autoimmune conditions like rheumatoid arthritis. In this review, we discuss the mixed successes of clinical trials investigating anti-inflammatory drugs in cardiovascular disease, with examples such as anti-cytokine monoclonal antibodies, colchicine, and methotrexate. Looking to the future, we highlight potential new directions for drug repurposing in cardiovascular inflammation, including the emerging concepts of drug re-engineering and chrono-pharmacology.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|