1
|
Sollmann N, Fuderer M, Crameri F, Weingärtner S, Baeßler B, Gulani V, Keenan KE, Mandija S, Golay X, deSouza NM. Color Maps: Facilitating the Clinical Impact of Quantitative MRI. J Magn Reson Imaging 2025; 61:1572-1579. [PMID: 39180202 PMCID: PMC11896930 DOI: 10.1002/jmri.29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024] Open
Abstract
Presenting quantitative data using non-standardized color maps potentially results in unrecognized misinterpretation of data. Clinically meaningful color maps should intuitively and inclusively represent data without misleading interpretation. Uniformity of the color gradient for color maps is critically important. Maximal color and lightness contrast, readability for color vision-impaired individuals, and recognizability of the color scheme are highly desirable features. This article describes the use of color maps in five key quantitative MRI techniques: relaxometry, diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI, MR elastography (MRE), and water-fat MRI. Current display practice of color maps is reviewed and shortcomings against desirable features are highlighted. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Nico Sollmann
- Department of Diagnostic and Interventional RadiologyUniversity Hospital UlmUlmGermany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Miha Fuderer
- Radiotherapy, Division Imaging and OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | | | - Bettina Baeßler
- Department of Diagnostic and Interventional RadiologyUniversity Hospital WuerzburgWuerzburgGermany
| | - Vikas Gulani
- Department of RadiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kathryn E. Keenan
- Physical Measurement LaboratoryNational Institute of Standards and TechnologyBoulderColoradoUSA
| | - Stefano Mandija
- Radiotherapy, Division Imaging and OncologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Xavier Golay
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Gold Standard PhantomsSheffieldUK
- BioxydynManchesterUK
| | - Nandita M. deSouza
- The Institute of Cancer ResearchLondonUK
- The Royal Marsden NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Choe YH, Kim SM. Recent Progress of Cardiac MRI for Nuclear Medicine Professionals. Nucl Med Mol Imaging 2024; 58:431-448. [PMID: 39635630 PMCID: PMC11612075 DOI: 10.1007/s13139-024-00850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 12/07/2024] Open
Abstract
Recent technical innovation enables faster and more reliable cardiac magnetic resonance (CMR) imaging than before. Artificial intelligence is used in improving image resolution, fast scanning, and automated analysis of CMR. Fast CMR techniques such as compressed sensing technique enable fast cine, perfusion, and late gadolinium-enhanced imaging and improve patient throughput and widening CMR indications. CMR feature-tracking technique gives insight on diastolic function parameters of ventricles and atria with prognostic implications. Myocardial parametric mapping became to be included in the routine CMR protocol. CMR fingerprinting enables simultaneous quantification of myocardial T1 and T2. These parameters may give information on myocardial alteration in the preclinical stages in various myocardial diseases. Four-dimensional flow imaging shows hemodynamic characteristics in or through the cardiovascular structures visually and gives quantitative values of vortex, kinetic energy, and wall-shear stress. In conclusion, CMR is an essential modality in the diagnosis of various cardiovascular diseases, especially myocardial diseases. Recent progress in CMR techniques promotes more widespread use of CMR in clinical practice. This review summarizes recent updates in CMR technologies and clinical research.
Collapse
Affiliation(s)
- Yeon Hyeon Choe
- Department of Radiology and Center for Imaging Science, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwonro, Gangnam-Gu, Seoul, 06351 South Korea
| | - Sung Mok Kim
- Department of Radiology and Center for Imaging Science, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwonro, Gangnam-Gu, Seoul, 06351 South Korea
| |
Collapse
|
3
|
Zaarour Y, Sifaoui I, Remili H, Kharoubi M, Zaroui A, Damy T, Deux JF. Diagnostic performance and relationships of structural parameters and strain components for the diagnosis of cardiac amyloidosis with MRI. Diagn Interv Imaging 2024; 105:489-497. [PMID: 39232937 DOI: 10.1016/j.diii.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE The purpose of this study was to evaluate the diagnostic performance and relationships of cardiac MRI structural parameters and strain components in patients with cardiac amyloidosis (CA) and to estimate the capabilities of these variables to discriminate between CA and non-amyloid cardiac hypertrophy (NACH). MATERIALS AND METHODS Seventy patients with CA (56 men; mean age, 76 ± 10 [standard deviation] years) and 32 patients (19 men; mean age, 63 ± 10 [standard deviation] years) with NACH underwent cardiac MRI. Feature tracking (FT) global longitudinal strain (GLS), radial strain (GRS), circumferential strain (GCS), strain AB ratio (apical strain divided by basal strain), myocardial T1, myocardial T2 and extracellular volume (ECV) were calculated. Comparisons between patients with CA and those with NACH were made using Mann-Whitney rank sum test. The ability of each variable to discriminate between CA and NACH was estimated using area under the receiver operating characteristic curve (AUC). RESULTS Patients with CA had higher median GLS (-7.0% [Q1, -9.0; Q3, -5.0]), higher median GCS (-12.0% [Q1, -15.0; Q3, -9.0]), and lower median GRS (16.5% [Q1, 13.0; Q3, 23.0]) than those with NACH (-9.0% [Q1, -11.0; Q3, -8.0]; -17.0% [Q1, -20.0; Q3, -14.0]; and 25.5% [Q1, 16.0; Q3, 31.5], respectively) (P < 0.001 for all). Median myocardial T1 and ECV were significantly higher in patients with CA (1112 ms [Q1, 1074; Q3, 1146] and 47% [Q1, 41; Q3, 55], respectively) than in those with NACH (1056 ms [Q1, 1011; Q3, 1071] and 28% [Q1, 26; Q3, 30], respectively) (P < 0.001). Basal ECV showed the best performance for the diagnosis of CA (AUC = 0.975; 95% confidence interval [CI]: 0.947-1). No differences in AUC were found between AB ratio of GRS (0.843; 95% CI: 0.768-0.918) and basal myocardial T1 (0.834; 95% CI: 0.741-0.928) for the diagnosis of CA (P = 0.81). The combination of the AB ratio of FT-GRS and basal myocardial T1 had a diagnostic performance not different from that of basal ECV (P = 0.06). CONCLUSION ECV outperforms FT-strain for the diagnosis of CA with cardiac MRI. The AB ratio of FT-GRS associated with myocardial T1 provides diagnostic performance similar to that achieved by ECV.
Collapse
Affiliation(s)
- Youssef Zaarour
- Department of Radiology, Henri Mondor University Hospital, Assistance Publique-Hopitaux de Paris, 94000 Creteil, France.
| | - Islem Sifaoui
- Department of Radiology, Henri Mondor University Hospital, Assistance Publique-Hopitaux de Paris, 94000 Creteil, France
| | - Haifa Remili
- Department of Radiology, Henri Mondor University Hospital, Assistance Publique-Hopitaux de Paris, 94000 Creteil, France
| | - Mounira Kharoubi
- Referral Center for Cardiac Amyloidosis, Department of Cardiology, Mondor Amyloidosis Network, GRC Amyloid Research Institute, CHU Henri Mondor, 94000 Creteil and Université Paris Est Creteil, INSERM Unit U955, Team 8, Paris-Est Creteil University, Créteil, France
| | - Amira Zaroui
- Referral Center for Cardiac Amyloidosis, Department of Cardiology, Mondor Amyloidosis Network, GRC Amyloid Research Institute, CHU Henri Mondor, 94000 Creteil and Université Paris Est Creteil, INSERM Unit U955, Team 8, Paris-Est Creteil University, Créteil, France
| | - Thibaud Damy
- Referral Center for Cardiac Amyloidosis, Department of Cardiology, Mondor Amyloidosis Network, GRC Amyloid Research Institute, CHU Henri Mondor, 94000 Creteil and Université Paris Est Creteil, INSERM Unit U955, Team 8, Paris-Est Creteil University, Créteil, France
| | - Jean-François Deux
- Department of Radiology, Geneva University Hospitals, 1205, Geneva, Switzerland
| |
Collapse
|
4
|
Nemes A. Myocardial Mechanics and Valvular and Vascular Abnormalities in Cardiac Amyloidosis. J Clin Med 2024; 13:4330. [PMID: 39124597 PMCID: PMC11313348 DOI: 10.3390/jcm13154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Cardiac amyloidosis is an infiltrative disease primarily caused by extracellular tissue deposition of amyloid fibrils in the myocardial interstitium. The aim of the present review was to summarize findings regarding changes in myocardial mechanics, valvular abnormalities, and vascular remodeling detected in patients with cardiac amyloidosis.
Collapse
Affiliation(s)
- Attila Nemes
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis Street 8, P.O. Box 427, 6725 Szeged, Hungary
| |
Collapse
|
5
|
Steen H, Montenbruck M, Kallifatidis A, André F, Frey N, Kelle S, Korosoglou G. Multi-parametric non-contrast cardiac magnetic resonance for the differentiation between cardiac amyloidosis and hypertrophic cardiomyopathy. Clin Res Cardiol 2024; 113:469-480. [PMID: 38095711 DOI: 10.1007/s00392-023-02348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/20/2023] [Indexed: 02/22/2024]
Abstract
AIM To evaluate the ability of fast strain-encoded (SENC) cardiac magnetic resonance (CMR) derived myocardial strain and native T1 mapping to discriminate between hypertrophic cardiomyopathy (HCM) and cardiac amyloidosis. METHODS Ninety nine patients (57 with hypertrophic cardiomyopathy and 42 with cardiac amyloidosis) were systematically analysed. LV-ejection fraction, LV-mass index, septal wall thickness and native T1 mapping values were assessed. In addition, global circumferential and longitudinal strain and segmental circumferential and longitudinal strain in basal, mid-ventricular, and apical segments were calculated. A ratio was built by dividing native T1 values by basal segmental strain (T1-to-basal segmental strain ratio). RESULTS Myocardial strain was equally distributed in apical and basal segments in HCM patients, whereas an apical sparing with less impaired apical strain was noticed in cardiac amyloidosis (apical-to-basal-ratio of 1.01 ± 0.23 versus 1.20 ± 0.28, p < 0.001). T1 values were significantly higher in amyloidosis compared to HCM patients (1170.7 ± 66.4 ms versus 1078.3 ± 57.4ms, p < 0.001). The T1-to-basal segmental strain ratio exhibited high accuracy for the differentiation between the two clinical entities (Sensitivity = 85%, Specificity = 77%, AUC = 0.90, 95% CI = 0.81-0.95, p < 0.001). Multivariable analysis showed that age and the T1-to-basal-strain-ratio were the most robust factors for the differentiation between HCM and cardiac amyloidosis. CONCLUSION The T1-to-basal-segmental strain ratio, combining information from segmental circumferential and longitudinal strain and native T1 mapping aids the differentiation between HCM and cardiac amyloidosis with high accuracy and within a fast CMR protocol, obviating the need for contrast agent administration.
Collapse
Affiliation(s)
- Henning Steen
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg, Heidelberg, Germany
| | | | | | - Florian André
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg, Heidelberg, Germany
| | - Sebastian Kelle
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Grigorios Korosoglou
- Departments of Cardiology, Vascular Medicine and Pneumology, GRN Hospital Weinheim, Roentgenstrasse 1, 69469, Weinheim, Germany.
- Weinheim Imaging Center, GRN Hospital Weinheim, Hector Foundation, Weinheim, Germany.
| |
Collapse
|
6
|
Liu X, Zhai N, Wang X, Wang J, Jiang M, Sun Z, Chen Y, Xu J, Cui Y, Li L. Cardiovascular magnetic resonance findings in Danon disease: a case series of a family. Front Cardiovasc Med 2023; 10:1159576. [PMID: 37215540 PMCID: PMC10192707 DOI: 10.3389/fcvm.2023.1159576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Background Cardiac involvement constitutes the primary cause of mortality in patients with Danon disease (DD). This study aimed to explore the cardiac magnetic resonance (CMR) features and progressions of DD cardiomyopathies in a family with long-term follow-up. Methods Seven patients (five females and two males), belonging to the same family and afflicted with DD, were enrolled in this study between 2017 and 2022. The cardiac structure, function, strain, tissue characteristics on CMR and their evolutions during follow-up were analyzed. Results Three young female patients (3/7, 42.86%) exhibited normal cardiac morphology. Four patients (4/7, 57.14%) displayed left ventricle hypertrophy (LVH), and mostly with septal thickening (3/4, 75%). A single male case (1/7, 14.3%) showed decreased LV ejection fraction (LVEF). Nonetheless, the global LV strain of the four adult patients decreased in different degree. The global strain of adolescent male patients was decreased compared to the age-appropriate female patients. Five patients (5/7, 71.43%) exhibited late gadolinium enhancement (LGE), with proportion ranging from 31.6% to 59.7% (median value 42.7%). The most common LGE location was the LV free wall (5/5, 100%), followed by right ventricle insertion points (4/5, 80%) and intraventricular septum (2/5, 40%). Segmental radial strain (rs = -0.586), circumferential strain (r = 0.589), and longitudinal strain (r = 0.514) were all moderately correlated with the LGE proportions of corresponding segments (P < 0.001). T2 hyperintense and perfusion defect foci were identified, overlapping with the LGE areas. During follow-up, both the young male patients exhibited notable deterioration of their cardiac symptoms and CMR. The LVEF and strain decreased, and the extent of LGE increased year by year. One patient underwent T1 mapping examination. The native T1 value was sensitively elevated even in regions without LGE. Conclusions Left ventricular hypertrophy, LGE with sparing or relatively less involved IVS, and LV dysfunction are prominent CMR features of Danon cardiomyopathy. Strain and T1 mapping may have advantages in detecting early-stage dysfunction and myocardial abnormalities in DD patients, respectively. Multi-parametric CMR can serve as an optimal instrument for detecting DD cardiomyopathies.
Collapse
Affiliation(s)
- Xiaolong Liu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Ning Zhai
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xiaoqiang Wang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jiehuan Wang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Mengchun Jiang
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Zhanguo Sun
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yueqin Chen
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Jingjing Xu
- Department of Radiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yinghua Cui
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Lu Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, China
| |
Collapse
|