1
|
Liang J, Tang B, Shen J, Rejiepu M, Guo Y, Wang X, Shao S, Guo F, Wang Q, Zhang L. New Insights into the Role of Inflammatory Pathways and Immune Cell Infiltration in Sleep Deprivation-Induced Atrial Fibrillation: An Integrated Bioinformatics and Experimental Study. J Inflamm Res 2025; 18:791-812. [PMID: 39845021 PMCID: PMC11752835 DOI: 10.2147/jir.s495777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Background The common occurrence of atrial fibrillation (AF) as a cardiac arrhythmia, along with its link to sleep deprivation (SD), is gaining more acknowledgment. Even with progress in comprehending the development of AF, the molecular connections between SD and AF are still not well-defined. The objective of this research was to pinpoint the shared molecular routes responsible for SD-induced AF and investigate possible treatment targets. Methods Utilizing bioinformatics, we examined two transcriptome datasets from the Gene Expression Omnibus (GEO) database to pinpoint genes with differential expression (DEGs) common to SD and AF. Analyses focusing on functional enrichment, such as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), were conducted to pinpoint crucial biological mechanisms and pathways. Furthermore, we utilized immunofluorescence and Western blot techniques to evaluate YBX1 expression and its role in activating NLRP3 inflammasomes in a rat model induced by SD. Results A total of 540 common DEGs were precisely identified between the AF and SD data collections. Studies emphasizing functional enrichment have highlighted the significance of inflammation pathways, particularly the NOD-like receptor signaling route. The application of machine learning uncovered four crucial genes-CDC5L, MAPK14, RAB5A, and YBX1-with YBX1 becoming the predominant gene in diagnostic processes. Investigating immune penetration revealed significant connections between YBX1 expression and specific immune cell types, notably CD8+ T cells and M1 macrophages. Live studies have demonstrated that SD amplifies the atrial electrical rearrangement, structural changes, the infiltration of inflammatory cells, and the heightened presence of YBX1 along with inflammasome elements. Conclusion The research pinpoints YBX1 as a crucial gene in SD-related AF, possibly influencing its impact via the NOD-like receptor signaling route and the invasion of immune cells. The results offer crucial understanding of the molecular processes behind AF and propose YBX1 as a possible treatment focus to reduce the risk of AF caused by SD.
Collapse
Affiliation(s)
- Junqing Liang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Jun Shen
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Manzeremu Rejiepu
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yankai Guo
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Xiaoyan Wang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Shijie Shao
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Fei Guo
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Qin Wang
- Department of Geriatrics and Cadre Ward, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
2
|
Kang M, Jia H, Feng M, Ren H, Gao J, Liu Y, Zhang L, Zhou MS. Cardiac macrophages in maintaining heart homeostasis and regulating ventricular remodeling of heart diseases. Front Immunol 2024; 15:1467089. [PMID: 39372400 PMCID: PMC11449765 DOI: 10.3389/fimmu.2024.1467089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Macrophages are most important immune cell population in the heart. Cardiac macrophages have broad-spectrum and heterogeneity, with two extreme polarization phenotypes: M1 pro-inflammatory macrophages (CCR2-ly6Chi) and M2 anti-inflammatory macrophages (CCR2-ly6Clo). Cardiac macrophages can reshape their polarization states or phenotypes to adapt to their surrounding microenvironment by altering metabolic reprogramming. The phenotypes and polarization states of cardiac macrophages can be defined by specific signature markers on the cell surface, including tumor necrosis factor α, interleukin (IL)-1β, inducible nitric oxide synthase (iNOS), C-C chemokine receptor type (CCR)2, IL-4 and arginase (Arg)1, among them, CCR2+/- is one of most important markers which is used to distinguish between resident and non-resident cardiac macrophage as well as macrophage polarization states. Dedicated balance between M1 and M2 cardiac macrophages are crucial for maintaining heart development and cardiac functional and electric homeostasis, and imbalance between macrophage phenotypes may result in heart ventricular remodeling and various heart diseases. The therapy aiming at specific target on macrophage phenotype is a promising strategy for treatment of heart diseases. In this article, we comprehensively review cardiac macrophage phenotype, metabolic reprogramming, and their role in maintaining heart health and mediating ventricular remodeling and potential therapeutic strategy in heart diseases.
Collapse
Affiliation(s)
- Mengjie Kang
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| | - Hui Jia
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, China
| | - Mei Feng
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| | - Haolin Ren
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjia Gao
- Department of Cardiology, Second Affiliated Hospital, Shenyang Medical College, Shenyang, China
| | - Yueyang Liu
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
- School of Pharmacy, Shenyang Medical College, Shenyang, China
| | - Lu Zhang
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| | - Ming-Sheng Zhou
- Science and Experiment Research Center, Shenyang Medical College & Shenyang Key Laboratory of Vascular Biology, Science and Experimental Research Center, Shenyang Medical College, Shenyang, China
| |
Collapse
|
3
|
Jin C, Zhong Z, Gao L, Wu X, Zhou C, Zhou G, Liu S. Focus on the Role of Inflammation as a Bridge between Ferroptosis and Atrial Fibrillation: A Narrative Review and Novel Perspective. Rev Cardiovasc Med 2024; 25:110. [PMID: 39076556 PMCID: PMC11264012 DOI: 10.31083/j.rcm2504110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 11/28/2023] [Indexed: 07/31/2024] Open
Abstract
In this comprehensive review, we examine the intricate interplay between inflammation, ferroptosis, and atrial fibrillation (AF), highlighting their significant roles in AF pathophysiology and pathogenesis. Augmented inflammatory responses are pivotal to AF, potentially leading to atrial remodeling and reentry phenomena by impacting calcium channels and atrial tissue fibrosis. A strong correlation exists between inflammatory cytokines and AF, underscoring the importance of inflammatory signaling pathways, such as NOD-like receptor thermal protien domain associated protein 3 (NLRP3) inflammasome, Nuclear Factor kappa B (NF- κ B) signaling, and Tumor necrosis factor- α (TNF- α ) signaling in AF development. Ferroptosis, a non-apoptotic regulated mode of cell death, has been widely studied in relation to cardiovascular diseases including heart failure, myocardial infarction, cardiomyopathy, and reperfusion injury. The interaction between ferroptosis and inflammation is complex and mutually influential. While significant progress has been made in understanding the inflammation-AF relationship, the role of inflammation as a conduit linking ferroptosis and AF remains underexplored. The specific pathogenesis and key molecules of atrial fibrosis caused by ferroptosis are still not fully understood. Here we review the role of inflammatory signaling in ferroptosis and AF. We elucidated the association between ferroptosis and AF, aiming to unveil mechanisms for targeted inhibition of atrial cell fibrosis and to propose novel therapeutic strategies for AF. This exploration is vital for advancing our knowledge and developing more effective interventions for AF, a condition deeply intertwined with inflammatory processes and ferroptotic pathways.
Collapse
Affiliation(s)
- Chenyang Jin
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong
University School of Medicine, 201620 Shanghai, China
| |
Collapse
|
4
|
Le Quilliec E, LeBlanc CA, Neuilly O, Xiao J, Younes R, Altuntas Y, Xiong F, Naud P, Villeneuve L, Sirois MG, Tanguay JF, Tardif JC, Hiram R. Atrial cardiomyocytes contribute to the inflammatory status associated with atrial fibrillation in right heart disease. Europace 2024; 26:euae082. [PMID: 38546222 PMCID: PMC11000822 DOI: 10.1093/europace/euae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
AIMS Right heart disease (RHD), characterized by right ventricular (RV) and atrial (RA) hypertrophy, and cardiomyocytes' (CM) dysfunctions have been described to be associated with the incidence of atrial fibrillation (AF). Right heart disease and AF have in common, an inflammatory status, but the mechanisms relating RHD, inflammation, and AF remain unclear. We hypothesized that right heart disease generates electrophysiological and morphological remodelling affecting the CM, leading to atrial inflammation and increased AF susceptibility. METHODS AND RESULTS Pulmonary artery banding (PAB) was surgically performed (except for sham) on male Wistar rats (225-275 g) to provoke an RHD. Twenty-one days (D21) post-surgery, all rats underwent echocardiography and electrophysiological studies (EPS). Optical mapping was performed in situ, on Langendorff-perfused hearts. The contractility of freshly isolated CM was evaluated and recorded during 1 Hz pacing in vitro. Histological analyses were performed on formalin-fixed RA to assess myocardial fibrosis, connexin-43 levels, and CM morphology. Right atrial levels of selected genes and proteins were obtained by qPCR and Western blot, respectively. Pulmonary artery banding induced severe RHD identified by RV and RA hypertrophy. Pulmonary artery banding rats were significantly more susceptible to AF than sham. Compared to sham RA CM from PAB rats were significantly elongated and hypercontractile. Right atrial CM from PAB animals showed significant augmentation of mRNA and protein levels of pro-inflammatory interleukin (IL)-6 and IL1β. Sarcoplasmic-endoplasmic reticulum Ca2+-ATPase-2a (SERCA2a) and junctophilin-2 were decreased in RA CM from PAB compared to sham rats. CONCLUSIONS Right heart disease-induced arrhythmogenicity may occur due to dysfunctional SERCA2a and inflammatory signalling generated from injured RA CM, which leads to an increased risk of AF.
Collapse
Affiliation(s)
- Ewen Le Quilliec
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Charles-Alexandre LeBlanc
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Orlane Neuilly
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Jiening Xiao
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Rim Younes
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Yasemin Altuntas
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Feng Xiong
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Patrice Naud
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Louis Villeneuve
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Martin G Sirois
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Jean-François Tanguay
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Jean-Claude Tardif
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| | - Roddy Hiram
- Department of Medicine, Montreal Heart Institute, University of Montreal, 5000 Belanger Street, Montreal, QC HIT 1C8, Canada
| |
Collapse
|
5
|
Burnham HV, Cizauskas HE, Barefield DY. Fine tuning contractility: atrial sarcomere function in health and disease. Am J Physiol Heart Circ Physiol 2024; 326:H568-H583. [PMID: 38156887 PMCID: PMC11221815 DOI: 10.1152/ajpheart.00252.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The molecular mechanisms of sarcomere proteins underlie the contractile function of the heart. Although our understanding of the sarcomere has grown tremendously, the focus has been on ventricular sarcomere isoforms due to the critical role of the ventricle in health and disease. However, atrial-specific or -enriched myofilament protein isoforms, as well as isoforms that become expressed in disease, provide insight into ways this complex molecular machine is fine-tuned. Here, we explore how atrial-enriched sarcomere protein composition modulates contractile function to fulfill the physiological requirements of atrial function. We review how atrial dysfunction negatively affects the ventricle and the many cardiovascular diseases that have atrial dysfunction as a comorbidity. We also cover the pathophysiology of mutations in atrial-enriched contractile proteins and how they can cause primary atrial myopathies. Finally, we explore what is known about contractile function in various forms of atrial fibrillation. The differences in atrial function in health and disease underscore the importance of better studying atrial contractility, especially as therapeutics currently in development to modulate cardiac contractility may have different effects on atrial sarcomere function.
Collapse
Affiliation(s)
- Hope V Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - Hannah E Cizauskas
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| | - David Y Barefield
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois, United States
| |
Collapse
|
6
|
Liu M, Mao C, Zhao F, Chen Z, Wang X. The application and mechanism of Chinese medicine in the upstream treatment of atrial fibrillation. Front Cardiovasc Med 2023; 10:1229021. [PMID: 37608811 PMCID: PMC10441233 DOI: 10.3389/fcvm.2023.1229021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023] Open
Abstract
Upstream treatment of atrial fibrillation (AF, for short) is a new approach to the prevention and treatment of AF with non-antiarrhythmic drugs, which is essentially primary and secondary prevention of AF. The former refers to the prevention of AF by controlling risk factors such as diabetes, hypertension, and heart failure before AF occurs, and the latter mainly refers to targeting ion channels, inflammation, oxidative stress, and other pathways to reduce or reverse atrial electrical and structural remodeling, reduction of AF load, and reduction of the chance of AF occurrence or progression. More and more studies have shown that many traditional Chinese medicines, active ingredients of Chinese medicines, and Chinese herbal formulas have definite effects on the upstream treatment of AF, but their mechanisms of action are different. Therefore, we summarized the relevant literature on the application and mechanisms of Chinese medicine on the upstream treatment of AF in recent years, hoping to be helpful for subsequent studies.
Collapse
Affiliation(s)
- Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Chenhan Mao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Fusen Zhao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
- Department of Cardiology, Affiliated Hospital of IntegratedTraditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|