1
|
Wang B, Qiang L, Zhang G, Chen W, Sheng Y, Wu G, Deng C, Zeng S, Zhang Q. APOC3 as a potential prognostic factor for hepatitis B virus-related acute-on-chronic liver failure. Medicine (Baltimore) 2025; 104:e41503. [PMID: 39928771 PMCID: PMC11813016 DOI: 10.1097/md.0000000000041503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/13/2024] [Accepted: 01/23/2025] [Indexed: 02/12/2025] Open
Abstract
Acute-on-chronic liver failure (ACLF) is the major cause of mortality in patients infected with the hepatitis B virus (HBV); however, early determination of the prognosis of patients with HBV-ACLF is insensitive or limited. This study aimed to analyze differentially expressed proteins in the plasma of patients with HBV-ACLF using data-independent acquisition mass spectrometry to provide a reference for short-term prognosis. Fifty HBV-ACLF patients and 15 healthy controls were enrolled in this study. Of these, 10 patients with HBV-ACLF and 5 healthy volunteers participated in data-independent acquisition-based proteomics and the potential core proteins were screened out via bioinformatics. Apolipoprotein C3 (APOC3) was selected and quantified by enzyme linked immunosorbent assays in all patients. And the area under the curve (AUC) was calculated to evaluate the value of APOC3 in the diagnosis and prognosis of patients with HBV-ACLF. A total of 247 differentially expressed proteins were identified in the serum of patients in the HBV-ACLF and normal control groups. A total of 148 proteins were upregulated and 99 proteins were downregulated in the HBV-ACLF group compared with those in the normal group. The expression level of APOC3 was 1.65 ± 0.44 mg/mL in patients with HBV-ACLF, which was obviously lower than the normal controls (2.04 ± 0.22 mg/mL) (P < .001) (AUC was 0.766, with a sensitivity of 62%, and specificity of 93.3%). The expression level of APOC3 was 1.38 ± 0.44 mg/mL in the non-survival group, which was obviously lower than the survival group (1.83 ± 0.35 mg/mL) (P < .0001) (AUC was 0.780, with a sensitivity of 50%, and specificity of 96.7%). APOC3 is associated with short-term prognosis of patients with HBV-ACLF and can be used as a potential prognostic biomarker in patients with HBV-ACLF.
Collapse
Affiliation(s)
- Bo Wang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Qiang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Geng Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wen Chen
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yunjian Sheng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wu
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Cunliang Deng
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shan Zeng
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qian Zhang
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Yu M, Wang Y, Yang S, Mei J, Liu Z, Zhang L, Xie W, Geng Z, Liu B, Wang H, Qu P, Niu N. Elucidating the Relationship between Neutrophil-Lymphocyte Ratio and Plaque Composition in Patients with Drug-Eluting Stent Restenosis by Virtual Histology-Intravascular Ultrasound. J Cardiovasc Dev Dis 2024; 11:211. [PMID: 39057631 PMCID: PMC11276828 DOI: 10.3390/jcdd11070211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: In-stent Restenosis (ISR) is a major factor influencing the prognosis and revascularization of target lesions. The plaque composition is unclear; therefore, it is critical to investigate ISR composition to identify clinical intervention markers. (2) Methods: This study was conducted on 36 patients with drug-eluting stent restenosis. The patients were classified into a Low Neutrophil-Lymphocyte Ratio (L-NLR) and High Neutrophil-Lymphocyte Ratio (H-NLR) according to the median NLR level of 36 patients. Discrepancies in the current information such as baseline data, biochemical examination, cardiac ultrasound data, etc., were examined to identify the underlying risk factors, and a multifactorial linear regression analysis of plaque properties was conducted. (3) Results: NLR = 2.64 was utilized to classify 18 patients into the L-NLR group and 18 patients into the H-NLR group. There were statistically significant differences in age, a pre-percutaneous coronary intervention (PCI) SYNTAX II score, a C-reactive protein (CRP), interleukin (IL)-6, plaque loading, a fibro-lipid tissue area, calcified nubs, and virtual histology-thin fibrous cap atherosclerotic (VH-TCFA). The significant impacts of variations in age, neutrophil-lymphocyte ratio (NLR) levels, and IL-6 levels on the plaque stress and percentage of the fibro-lipid tissue in virtual histology-intravascular ultrasound (VH-IVUS) were identified through multifactorial linear regression. (4) Conclusions: The high NLR group demonstrated increased myocardial injury severity, consistent with higher SYNTAX II scores, a higher plaque burden, and higher proportions of vulnerable components. NLR proved to be a risk factor for both the plaque load and the proportion of the fibro-lipid tissue in ISR.
Collapse
Affiliation(s)
- Ming Yu
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| | - Yuxing Wang
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| | - Song Yang
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| | - Jiajie Mei
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| | - Zhenzhu Liu
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| | - Lijiao Zhang
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| | - Wenli Xie
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| | - Zhaohong Geng
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| | - Baole Liu
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| | - Hongyan Wang
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| | - Peng Qu
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
- Department of Medicine, Dalian University of Technology, Dalian 116081, China
| | - Nan Niu
- The First Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China; (M.Y.)
| |
Collapse
|
3
|
Hou J, Deng Q, Qiu X, Liu S, Li Y, Huang C, Wang X, Zhang Q, Deng X, Zhong Z, Zhong W. Proteomic analysis of plasma proteins from patients with cardiac rupture after acute myocardial infarction using TMT-based quantitative proteomics approach. Clin Proteomics 2024; 21:18. [PMID: 38429673 PMCID: PMC10908035 DOI: 10.1186/s12014-024-09474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Cardiac rupture (CR) is a rare but catastrophic mechanical complication of acute myocardial infarction (AMI) that seriously threatens human health. However, the reliable biomarkers for clinical diagnosis and the underlying signaling pathways insights of CR has yet to be elucidated. METHODS In the present study, a quantitative approach with tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry was used to characterize the differential protein expression profiles of patients with CR. Plasma samples were collected from patients with CR (n = 37), patients with AMI (n = 47), and healthy controls (n = 47). Candidate proteins were selected for validation by multiple reaction monitoring (MRM) and enzyme-linked immunosorbent assay (ELISA). RESULTS In total, 1208 proteins were quantified and 958 differentially expressed proteins (DEPs) were identified. The difference in the expression levels of the DEPs was more noticeable between the CR and Con groups than between the AMI and Con groups. Bioinformatics analysis showed most of the DEPs to be involved in numerous crucial biological processes and signaling pathways, such as RNA transport, ribosome, proteasome, and protein processing in the endoplasmic reticulum, as well as necroptosis and leukocyte transendothelial migration, which might play essential roles in the complex pathological processes associated with CR. MRM analysis confirmed the accuracy of the proteomic analysis results. Four proteins i.e., C-reactive protein (CRP), heat shock protein beta-1 (HSPB1), vinculin (VINC) and growth/differentiation factor 15 (GDF15), were further validated via ELISA. By receiver operating characteristic (ROC) analysis, combinations of these four proteins distinguished CR patients from AMI patients with a high area under the curve (AUC) value (0.895, 95% CI, 0.802-0.988, p < 0.001). CONCLUSIONS Our study highlights the value of comprehensive proteomic characterization for identifying plasma proteome changes in patients with CR. This pilot study could serve as a valid foundation and initiation point for elucidation of the mechanisms of CR, which might aid in identifying effective diagnostic biomarkers in the future.
Collapse
Affiliation(s)
- Jingyuan Hou
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
- GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China
| | - Qiaoting Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xiaohong Qiu
- Meizhou clinical Medical School, Guangdong Medical University, Meizhou, Guangdong, 514031, China
| | - Sudong Liu
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Youqian Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Changjing Huang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Xianfang Wang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Qunji Zhang
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xunwei Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| |
Collapse
|
4
|
Liu X, Shao Y, Han L, Zhang R, Chen J. Emerging Evidence Linking the Liver to the Cardiovascular System: Liver-derived Secretory Factors. J Clin Transl Hepatol 2023; 11:1246-1255. [PMID: 37577236 PMCID: PMC10412704 DOI: 10.14218/jcth.2022.00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 02/27/2023] [Indexed: 07/03/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide. Recently, accumulating evidence has revealed hepatic mediators, termed as liver-derived secretory factors (LDSFs), play an important role in regulating CVDs such as atherosclerosis, coronary artery disease, thrombosis, myocardial infarction, heart failure, metabolic cardiomyopathy, arterial hypertension, and pulmonary hypertension. LDSFs presented here consisted of microbial metabolite, extracellular vesicles, proteins, and microRNA, they are primarily or exclusively synthesized and released by the liver, and have been shown to exert pleiotropic actions on cardiovascular system. LDSFs mainly target vascular endothelial cell, vascular smooth muscle cells, cardiomyocytes, fibroblasts, macrophages and platelets, and further modulate endothelial nitric oxide synthase/nitric oxide, endothelial function, energy metabolism, inflammation, oxidative stress, and dystrophic calcification. Although some LDSFs are known to be detrimental/beneficial, controversial findings were also reported for many. Therefore, more studies are required to further explore the causal relationships between LDSFs and CVDs and uncover the exact mechanisms, which is expected to extend our understanding of the crosstalk between the liver and cardiovascular system and identify potential therapeutic targets. Furthermore, in the case of patients with liver disease, awareness should be given to the implications of these abnormalities in the cardiovascular system. These studies also underline the importance of early recognition and intervention of liver abnormalities in the practice of cardiovascular care, and a multidisciplinary approach combining hepatologists and cardiologists would be more preferable for such patients.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Yijia Shao
- Department of Geriatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Linjiang Han
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Ruyue Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| | - Jimei Chen
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Zheng M, Zhou M, Lu T, Lu Y, Qin P, Liu C. TMT and PRM Based Quantitative Proteomics to Explore the Protective Role and Mechanism of Iristectorin B in Stroke. Int J Mol Sci 2023; 24:15195. [PMID: 37894877 PMCID: PMC10607092 DOI: 10.3390/ijms242015195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Stroke is a serious disease caused by the rupture or blockage of the cerebrovascular system. Its pathogenesis is complex and involves multiple mechanisms. Iristectorin B is a natural isoflavone that has certain anti stroke effects. In this study, an in vitro stroke injury model of glyoxylate deprivation was established using PC12 cells, which was used to evaluate the anti-stroke activity of Iristectorin B in ejecta stem. The results showed that Iristectorin B, a natural isoflavone derived from Dried Shoot, significantly reduced the damage to PC12 cells caused by oxygen glucose deprivation/reoxygenation, decreased apoptosis, enhanced cell survival and reduced Ca2+, LDH and ROS levels. The results showed that Iristectorin B had a significant protective effect on Na2S2O4-injured PC12 cells, and the mechanism may be related to the protective effect of neurons in the brain. After protein extraction and various analyses were performed, a series of cutting-edge technologies were organically combined to study the quantitative proteome of each group. Differential proteins were then analyzed. According to the protein screening principle, ferroptosis-related proteins were most closely associated with stroke. The differential proteins associated with ferroptosis screened were SLC3A2, TFR1 and HMOX1, with HMOX1 being the most significantly elevated and reduced via dosing. Iristectorin B may act as a protective agent against stroke by regulating ferroptosis, and SLC3A2, TFR1 and HMOX1 may serve as potential diagnostic biomarkers for stroke, providing additional evidence to support the importance of ferroptosis in stroke.
Collapse
Affiliation(s)
- Meizhu Zheng
- College of Life Sciences, Changchun Normal University, Changchun 130032, China;
| | - Mi Zhou
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Tingting Lu
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Yao Lu
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Peng Qin
- Central Laboratory, Changchun Normal University, Changchun 130032, China (T.L.); (Y.L.)
| | - Chunming Liu
- College of Life Sciences, Changchun Normal University, Changchun 130032, China;
| |
Collapse
|