1
|
Tseng HT, Lin YW, Sung SY, Tsai YT, Liu CW, Hsu PS, Tsai CS, Lin FY. Advances and Challenges of Tissue Vascular Scaffolds and Supercritical Carbon Dioxide Technology in Cardiovascular Diseases. Tissue Eng Regen Med 2025; 22:273-284. [PMID: 40029563 PMCID: PMC11926293 DOI: 10.1007/s13770-025-00710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Atherosclerosis often leads to ischemic heart disease and peripheral artery disease. Traditional revascularization technique such as bypass grafting using autologous vessels are commonly employed. However, limitations arise when patients lack suitable grafts due to underlying diseases or previous surgeries, prompting the need to substitute vessel grafts. Due to the high biocompatibility of decellularized products (grafts or scaffolds) prepared using supercritical carbon dioxide (ScCO2), it has been widely applied in decellularization-related technologies in recent years. Therefore, this review article will comprehensively discuss the current developments in tissue vascular scaffolds applied to the treatment of cardiovascular diseases, with a particular focus on the application of supercritical carbon dioxide technology in this field and the challenges it faces. METHOD This review was compiled by searching relevant references on PubMed database (before June 2024) based on selected key words and specific terms. RESULTS ScCO2 is an effective and eco-friendly extraction agent widely used in industries like food, pharmaceuticals, and cosmetics. It has been applied in decellularization processes to obtain extracellular matrices (ECMs) from tissues. ScCO2 technology has emerged as a promising method in cardiovascular disease treatment, particularly for developing tissue vascular scaffolds. ScCO2 effectively removes cellular components while preserving the ECM, ensuring high biocompatibility and reduced immune response. It has been applied to decellularize tissues like heart valves and arteries, creating scaffolds that mimic natural ECM to support cell proliferation and tissue regeneration. Despite challenges such as solubility limitations and cost, ScCO2 offers advantages like low toxicity and ease of use, making it a valuable tool in advancing regenerative medicine for cardiovascular applications. CONCLUSION ScCO2 has the advantages of low cellular toxicity, cost-effectiveness, and ease of manipulation. These characteristics have the potential to lead to significant progress in cardiovascular research on tissue regeneration.
Collapse
Affiliation(s)
- Horng-Ta Tseng
- Taipei Heart Institute, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yi-Wen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei, 11031, Taiwan
- Institute of Oral Biology, National Yang Ming Chiao Tung University (Yangming Campus), Taipei, 112304, Taiwan
| | - Shih-Ying Sung
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei, 11490, Taiwan
| | - Yi-Ting Tsai
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei, 11490, Taiwan
| | - Chen-Wei Liu
- Department of Basic Medical Science, College of Medicine, University of Arizona, Phoenix, AZ, 85721, USA
| | - Po-Shun Hsu
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei, 11490, Taiwan
| | - Chien-Sung Tsai
- Taipei Heart Institute, Taipei Medical University, Taipei, 11031, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan
- Division of Cardiovascular Surgery, Tri-Service General Hospital, Defense Medical Center, Taipei, 11490, Taiwan
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Feng-Yen Lin
- Taipei Heart Institute, Taipei Medical University, Taipei, 11031, Taiwan.
- Division of Cardiology and Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, 11031, Taiwan.
- Departments of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Torabinavid P, Khosropanah MH, Azimzadeh A, Kajbafzadeh AM. Current strategies on kidney regeneration using tissue engineering approaches: a systematic review. BMC Nephrol 2025; 26:66. [PMID: 39934739 PMCID: PMC11816546 DOI: 10.1186/s12882-025-03968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION Over the past two decades, there has been a notable rise in the number of individuals afflicted with End-Stage Renal Disease, resulting in an increased demand for renal replacement therapies. While periodic dialysis is beneficial, it can negatively impact a patient's quality of life and does not fully replicate the secretory functions of the kidneys. Additionally, the scarcity of organ donors and complications associated with organ transplants have underscored the importance of tissue engineering. Regenerative medicine is revolutionized by developing decellularized organs and tissue engineering, which is considered a cutting-edge area of study with enormous potential. Developing bioengineered kidneys using tissue engineering approaches for renal replacement therapy is promising. METHOD AND MATERIALS We aimed to systematically review the essential preclinical data to promote the translation of tissue engineering research for kidney repair from the laboratory to clinical practice. A PubMed search strategy was systematically implemented without any linguistic restrictions. The assessment focused on complete circumferential and inlay procedures, thoroughly evaluating parameters such as cell seeding, decellularization techniques, recellularization protocols, and biomaterial types. RESULTS Of the 1,484 studies retrieved from the following primary searches, 105 were included. Kidneys were harvested from eight different species. Nine studies performed kidney decellularization from discarded human kidneys. Sixty-four studies performed whole organ decellularization. Some studies used acellular scaffolds to produce hydrogels, sheets, and solutions. Decellularization is achieved through physical, chemical, or enzymatic treatment or a combination of them. Sterilization of acellular scaffolds was also thoroughly and comparatively evaluated. Lastly, different recellularization protocols and types of cells used for further cell seeding were demonstrated. CONCLUSION A comprehensive review of the existing literature about kidney tissue engineering was conducted to evaluate its effectiveness in preclinical investigations. Our findings indicate that enhancements in the design of preclinical studies are necessary to facilitate the successful translation of tissue engineering technologies into clinical applications.
Collapse
Affiliation(s)
- Parham Torabinavid
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Khosropanah
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Pediatric Urology and Regenerative Medicine Research Center, Pediatric Center of Excellence, Children's Medical Center, No. 62, Dr. Qarib's St, Keshavarz Blvd, Tehran, 14194 33151, Iran.
| |
Collapse
|
3
|
Ali M, Corridon PR. Integrated environmental and health economic assessments of novel xeno-keratografts addressing a growing public health crisis. Sci Rep 2024; 14:25600. [PMID: 39465317 PMCID: PMC11514208 DOI: 10.1038/s41598-024-77783-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024] Open
Abstract
Tissue scarcity poses global challenges for corneal transplantation and public health. Xeno-keratoplasty using animal-derived tissues offers a potential solution, but its environmental and economic implications remain unclear. This study evaluated two xeno-keratoplasty procedures at a single institution: (1) native corneas (Option 1) and (2) tissue-engineered corneal scaffolds derived from slaughterhouse waste (Option 2). Life cycle assessment (LCA) quantified environmental impacts across 18 midpoint indicators, while cost-effectiveness analysis (CEA) incorporated cost and environmental impact using two approaches. Option 1 exhibited significantly lower environmental impact than Option 2 across most indicators, primarily due to the energy and equipment demands of cell culture in Option 2. Both CEA approaches (carbon offset pricing and utility decrement) demonstrated cost-effectiveness dominance for Option 1. Xeno-keratoplasty using native corneas (Option 1) appears more environmentally and economically favorable than tissue-engineered scaffolds (Option 2) in the current analysis. Future studies could explore diverse xeno-keratoplasty techniques for optimizing sustainability.
Collapse
Affiliation(s)
- Mustafa Ali
- School of Management, University of Sheffield, South Yorkshire, S10 1FL, UK
| | - Peter R Corridon
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
- Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
4
|
Paunovic Pantic J, Vucevic D, Radosavljevic T, Corridon PR, Valjarevic S, Cumic J, Bojic L, Pantic I. Machine learning approaches to detect hepatocyte chromatin alterations from iron oxide nanoparticle exposure. Sci Rep 2024; 14:19595. [PMID: 39179629 PMCID: PMC11344034 DOI: 10.1038/s41598-024-70559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
This study focuses on developing machine learning models to detect subtle alterations in hepatocyte chromatin organization due to Iron (II, III) oxide nanoparticle exposure, hypothesizing that exposure will significantly alter chromatin texture. A total of 2000 hepatocyte nuclear regions of interest (ROIs) from mouse liver tissue were analyzed, and for each ROI, 5 different parameters were calculated: Long Run Emphasis, Short Run Emphasis, Run Length Nonuniformity, and 2 wavelet coefficient energies obtained after the discrete wavelet transform. These parameters served as input for supervised machine learning models, specifically random forest and gradient boosting classifiers. The models demonstrated relatively robust performance in distinguishing hepatocyte chromatin structures belonging to the group exposed to IONPs from the controls. The study's findings suggest that iron oxide nanoparticles induce substantial changes in hepatocyte chromatin distribution and underscore the potential of AI techniques in advancing hepatocyte evaluation in physiological and pathological conditions.
Collapse
Affiliation(s)
- Jovana Paunovic Pantic
- Department of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr. Subotica 9, 11129, Belgrade, Serbia
| | - Danijela Vucevic
- Department of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr. Subotica 9, 11129, Belgrade, Serbia
| | - Tatjana Radosavljevic
- Department of Pathophysiology, Faculty of Medicine, University of Belgrade, Dr. Subotica 9, 11129, Belgrade, Serbia
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Department of Biomedical Engineering and Biotechnology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
| | - Svetlana Valjarevic
- Faculty of Medicine, Clinical Hospital Center Zemun, University of Belgrade, Vukova 9, 11000, Belgrade, Serbia
| | - Jelena Cumic
- Faculty of Medicine, University of Belgrade, University Clinical Centre of Serbia, Dr. Koste Todorovića 8, 11129, Belgrade, Serbia
| | - Ljubisa Bojic
- Institute for Artificial Intelligence Research and Development of Serbia, Fruškogorska 1, 21000, Novi Sad, Serbia
| | - Igor Pantic
- Department of Medical Physiology, Faculty of Medicine, University of Belgrade, Visegradska 26/II, 11129, Belgrade, Serbia.
- University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, 3498838, Haifa, Israel.
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Be'er Sheva, Israel.
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
| |
Collapse
|
5
|
Ali ZM, Wang X, Shibru MG, Alhosani M, Alfadhli N, Alnuaimi A, Murtaza FF, Zaid A, Khaled R, Salih AE, Vurivi H, Daoud S, Butt H, Chan V, Pantic IV, Paunovic J, Corridon PR. A sustainable approach to derive sheep corneal scaffolds from stored slaughterhouse waste. Regen Med 2024; 19:303-315. [PMID: 39177571 PMCID: PMC11346552 DOI: 10.1080/17460751.2024.2357499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/10/2024] [Indexed: 08/24/2024] Open
Abstract
Aim: The escalating demand for corneal transplants significantly surpasses the available supply. To bridge this gap, we concentrated on ethical and sustainable corneal grafting sources. Our objective was to create viable corneal scaffolds from preserved slaughterhouse waste.Materials & methods: Corneas were extracted and decellularized from eyeballs that had been refrigerated for several days. These scaffolds underwent evaluation through DNA quantification, histological analysis, surface tension measurement, light propagation testing, and tensile strength assessment.Results: Both the native and acellular corneas (with ~90% DNA removed using a cost-effective and environmentally friendly surfactant) maintained essential optical and biomechanical properties for potential clinical use.Conclusion: Our method of repurposing slaughterhouse waste, stored at 4°C for several days, to develop corneal scaffolds offers a sustainable and economical alternative xenograft model.
Collapse
Affiliation(s)
- Zehara M Ali
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Xinyu Wang
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Meklit G Shibru
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Maha Alhosani
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Nouf Alfadhli
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Aysha Alnuaimi
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Fiza F Murtaza
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Aisha Zaid
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Rodaina Khaled
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Ahmed E Salih
- Department of Mechanical Engineering, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi,UAE
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Vincent Chan
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
| | - Igor V Pantic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, Belgrade, RS-11129, Serbia
- University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa, 3498838,Israel
- Department of Pharmacology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
| | - Jovana Paunovic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, Visegradska 26/II, Belgrade, RS-11129, Serbia
| | - Peter R Corridon
- Department of Biomedical Engineering & Biotechnology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, UAE
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, UAE
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, UAE
| |
Collapse
|
6
|
Shibru MG, Ali ZM, Alali S, Alkhoori H, Corridon PR. Keeping an eye on sustainable regeneration. Regen Med 2023; 18:891-895. [PMID: 37554104 DOI: 10.2217/rme-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Affiliation(s)
- Meklit G Shibru
- Department of Immunology & Physiology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Zehara M Ali
- Department of Immunology & Physiology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Sumayya Alali
- Department of Immunology & Physiology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Hessa Alkhoori
- Department of Immunology & Physiology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
| | - Peter R Corridon
- Department of Immunology & Physiology, College of Medicine & Health Sciences, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science & Technology, Abu Dhabi, United Arab Emirates
- Biomedical Engineering & Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Wang X, Elbahrawi RT, Abdukadir AM, Ali ZM, Chan V, Corridon PR. A proposed model of xeno-keratoplasty using 3D printing and decellularization. Front Pharmacol 2023; 14:1193606. [PMID: 37799970 PMCID: PMC10548234 DOI: 10.3389/fphar.2023.1193606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 09/06/2023] [Indexed: 10/07/2023] Open
Abstract
Corneal opacity is a leading cause of vision impairment and suffering worldwide. Transplantation can effectively restore vision and reduce chronic discomfort. However, there is a considerable shortage of viable corneal graft tissues. Tissue engineering may address this issue by advancing xeno-keratoplasty as a viable alternative to conventional keratoplasty. In particular, livestock decellularization strategies offer the potential to generate bioartificial ocular prosthetics in sufficient supply to match existing and projected needs. To this end, we have examined the best practices and characterizations that have supported the current state-of-the-art driving preclinical and clinical applications. Identifying the challenges that delimit activities to supplement the donor corneal pool derived from acellular scaffolds allowed us to hypothesize a model for keratoprosthesis applications derived from livestock combining 3D printing and decellularization.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawdah Taha Elbahrawi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Azhar Mohamud Abdukadir
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Zehara Mohammed Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- Hleathcare, Engineering and Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Valjarevic S, Jovanovic MB, Miladinovic N, Cumic J, Dugalic S, Corridon PR, Pantic I. Gray-Level Co-occurrence Matrix Analysis of Nuclear Textural Patterns in Laryngeal Squamous Cell Carcinoma: Focus on Artificial Intelligence Methods. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1220-1227. [PMID: 37749686 DOI: 10.1093/micmic/ozad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 09/27/2023]
Abstract
Gray-level co-occurrence matrix (GLCM) and discrete wavelet transform (DWT) analyses are two contemporary computational methods that can identify discrete changes in cell and tissue textural features. Previous research has indicated that these methods may be applicable in the pathology for identification and classification of various types of cancers. In this study, we present findings that squamous epithelial cells in laryngeal carcinoma, which appear morphologically intact during conventional pathohistological evaluation, have distinct nuclear GLCM and DWT features. The average values of nuclear GLCM indicators of these cells, such as angular second moment, inverse difference moment, and textural contrast, substantially differ when compared to those in noncancerous tissue. In this work, we also propose machine learning models based on random forests and support vector machine that can be successfully trained to separate the cells using GLCM and DWT quantifiers as input data. We show that, based on a limited cell sample, these models have relatively good classification accuracy and discriminatory power, which makes them suitable candidates for future development of AI-based sensors potentially applicable in laryngeal carcinoma diagnostic protocols.
Collapse
Affiliation(s)
- Svetlana Valjarevic
- University of Belgrade, Faculty of Medicine, Clinical Hospital Center "Zemun", Vukova 9, RS-11080 Belgrade, Serbia
| | - Milan B Jovanovic
- University of Belgrade, Faculty of Medicine, Clinical Hospital Center "Zemun", Vukova 9, RS-11080 Belgrade, Serbia
| | - Nenad Miladinovic
- University of Belgrade, Faculty of Medicine, Clinical Hospital Center "Zemun", Vukova 9, RS-11080 Belgrade, Serbia
| | - Jelena Cumic
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Dr. Koste Todorovića 8, RS-11129, Belgrade, Serbia
| | - Stefan Dugalic
- University of Belgrade, Faculty of Medicine, University Clinical Centre of Serbia, Dr. Koste Todorovića 8, RS-11129, Belgrade, Serbia
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Shakhbout Bin Sultan St - Hadbat Al Za'faranah - Zone 1 - Abu Dhabi, UAE
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Shakhbout Bin Sultan St - Hadbat Al Za'faranah - Zone 1 - Abu Dhabi, UAE
- Center for Biotechnology, Khalifa University of Science and Technology, Shakhbout Bin Sultan St - Hadbat Al Za'faranah - Zone 1 - Abu Dhabi, UAE
| | - Igor Pantic
- University of Belgrade, Faculty of Medicine, Department of Medical Physiology, Višegradska 26/2, RS-11129 Belgrade, Serbia
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Shakhbout Bin Sultan St - Hadbat Al Za'faranah - Zone 1 - Abu Dhabi, UAE
- University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, Haifa IL-3498838, Israel
| |
Collapse
|
9
|
Pantic IV, Cumic J, Valjarevic S, Shakeel A, Wang X, Vurivi H, Daoud S, Chan V, Petroianu GA, Shibru MG, Ali ZM, Nesic D, Salih AE, Butt H, Corridon PR. Computational approaches for evaluating morphological changes in the corneal stroma associated with decellularization. Front Bioeng Biotechnol 2023; 11:1105377. [PMID: 37304146 PMCID: PMC10250676 DOI: 10.3389/fbioe.2023.1105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/11/2023] [Indexed: 06/13/2023] Open
Abstract
Decellularized corneas offer a promising and sustainable source of replacement grafts, mimicking native tissue and reducing the risk of immune rejection post-transplantation. Despite great success in achieving acellular scaffolds, little consensus exists regarding the quality of the decellularized extracellular matrix. Metrics used to evaluate extracellular matrix performance are study-specific, subjective, and semi-quantitative. Thus, this work focused on developing a computational method to examine the effectiveness of corneal decellularization. We combined conventional semi-quantitative histological assessments and automated scaffold evaluations based on textual image analyses to assess decellularization efficiency. Our study highlights that it is possible to develop contemporary machine learning (ML) models based on random forests and support vector machine algorithms, which can identify regions of interest in acellularized corneal stromal tissue with relatively high accuracy. These results provide a platform for developing machine learning biosensing systems for evaluating subtle morphological changes in decellularized scaffolds, which are crucial for assessing their functionality.
Collapse
Affiliation(s)
- Igor V. Pantic
- Department of Medical Physiology, Faculty of Medicine, Visegradska 26/II, University of Belgrade, Belgrade, Serbia
- University of Haifa, Haifa, Israel
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be’er Sheva, Israel
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Jelena Cumic
- Faculty of Medicine, University of Belgrade, University Clinical Center of Serbia, Belgrade, Serbia
| | - Svetlana Valjarevic
- Faculty of Medicine, Clinical Hospital Center Zemun, University of Belgrade, Belgrade, Serbia
| | - Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Xinyu Wang
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Georg A. Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Meklit G. Shibru
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Zehara M. Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dejan Nesic
- Department of Medical Physiology, Faculty of Medicine, Visegradska 26/II, University of Belgrade, Belgrade, Serbia
| | - Ahmed E. Salih
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Wang X, Shakeel A, Salih AE, Vurivi H, Daoud S, Desidery L, Khan RL, Shibru MG, Ali ZM, Butt H, Chan V, Corridon PR. A scalable corneal xenograft platform: simultaneous opportunities for tissue engineering and circular economic sustainability by repurposing slaughterhouse waste. Front Bioeng Biotechnol 2023; 11:1133122. [PMID: 37180037 PMCID: PMC10168539 DOI: 10.3389/fbioe.2023.1133122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Corneal disease is a leading cause of blindness globally that stems from various etiologies. High-throughput platforms that can generate substantial quantities of corneal grafts will be invaluable in addressing the existing global demand for keratoplasty. Slaughterhouses generate substantial quantities of underutilized biological waste that can be repurposed to reduce current environmentally unfriendly practices. Such efforts to support sustainability can simultaneously drive the development of bioartificial keratoprostheses. Methods: Scores of discarded eyes from the prominent Arabian sheep breeds in our surrounding region of the United Arab Emirates (UAE) were repurposed to generate native and acellular corneal keratoprostheses. Acellular corneal scaffolds were created using a whole-eye immersion/agitation-based decellularization technique with a widely available, eco-friendly, and inexpensive 4% zwitterionic biosurfactant solution (Ecover, Malle, Belgium). Conventional approaches like DNA quantification, ECM fibril organization, scaffold dimensions, ocular transparency and transmittance, surface tension measurements, and Fourier-transform infrared (FTIR) spectroscopy were used to examine corneal scaffold composition. Results: Using this high-throughput system, we effectively removed over 95% of the native DNA from native corneas while retaining the innate microarchitecture that supported substantial light transmission (over 70%) after reversing opacity, a well-established hallmark of decellularization and long-term native corneal storage, with glycerol. FTIR data revealed the absence of spectral peaks in the frequency range 2849 cm-1 to 3075 cm-1, indicating the effective removal of the residual biosurfactant post-decellularization. Surface tension studies confirmed the FTIR data by capturing the surfactant's progressive and effectual removal through tension measurements ranging from approximately 35 mN/m for the 4% decellularizing agent to 70 mN/m for elutes highlighting the effective removal of the detergent. Discussion: To our knowledge, this is the first dataset to be generated outlining a platform that can produce dozens of ovine acellular corneal scaffolds that effectively preserve ocular transparency, transmittance, and ECM components using an eco-friendly surfactant. Analogously, decellularization technologies can support corneal regeneration with attributes comparable to native xenografts. Thus, this study presents a simplified, inexpensive, and scalable high-throughput corneal xenograft platform to support tissue engineering, regenerative medicine, and circular economic sustainability.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed E. Salih
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Hema Vurivi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Sayel Daoud
- Anatomical Pathology Laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Luca Desidery
- Department of Civil Infrastructure and Environmental Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Meklit G. Shibru
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Zehara M. Ali
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
11
|
Corridon PR. Capturing effects of blood flow on the transplanted decellularized nephron with intravital microscopy. Sci Rep 2023; 13:5289. [PMID: 37002341 PMCID: PMC10066218 DOI: 10.1038/s41598-023-31747-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 04/04/2023] Open
Abstract
Organ decellularization creates cell-free, collagen-based extracellular matrices that can be used as scaffolds for tissue engineering applications. This technique has recently gained much attention, yet adequate scaffold repopulation and implantation remain a challenge. Specifically, there still needs to be a greater understanding of scaffold responses post-transplantation and ways we can improve scaffold durability to withstand the in vivo environment. Recent studies have outlined vascular events that limit organ decellularization/recellularization scaffold viability for long-term transplantation. However, these insights have relied on in vitro/in vivo approaches that need enhanced spatial and temporal resolutions to investigate such issues at the microvascular level. This study uses intravital microscopy to gain instant feedback on their structure, function, and deformation dynamics. Thus, the objective of this study was to capture the effects of in vivo blood flow on the decellularized glomerulus, peritubular capillaries, and tubules after autologous and allogeneic orthotopic transplantation into rats. Large molecular weight dextran molecules labeled the vasculature. They revealed substantial degrees of translocation from glomerular and peritubular capillary tracks to the decellularized tubular epithelium and lumen as early as 12 h after transplantation, providing real-time evidence of the increases in microvascular permeability. Macromolecular extravasation persisted for a week, during which the decellularized microarchitecture was significantly and comparably compromised and thrombosed in both autologous and allogeneic approaches. These results indicate that in vivo multiphoton microscopy is a powerful approach for studying scaffold viability and identifying ways to promote scaffold longevity and vasculogenesis in bioartificial organs.
Collapse
Affiliation(s)
- Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Center, Biomedical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Wake Forest Institute for Regenerative Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1083, USA.
| |
Collapse
|
12
|
Pantic I, Cumic J, Dugalic S, Petroianu GA, Corridon PR. Gray level co-occurrence matrix and wavelet analyses reveal discrete changes in proximal tubule cell nuclei after mild acute kidney injury. Sci Rep 2023; 13:4025. [PMID: 36899130 PMCID: PMC10006226 DOI: 10.1038/s41598-023-31205-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Acute kidney injury (AKI) relates to an abrupt reduction in renal function resulting from numerous conditions. Morbidity, mortality, and treatment costs related to AKI are relatively high. This condition is strongly associated with damage to proximal tubule cells (PTCs), generating distinct patterns of transcriptional and epigenetic alterations that result in structural changes in the nuclei of this epithelium. To this date, AKI-related nuclear chromatin redistribution in PTCs is poorly understood, and it is unclear whether changes in PTC chromatin patterns can be detected using conventional microscopy during mild AKI, which can progress to more debilitating forms of injury. In recent years, gray level co-occurrence matrix (GLCM) analysis and discrete wavelet transform (DWT) have emerged as potentially valuable methods for identifying discrete structural changes in nuclear chromatin architecture that are not visible during the conventional histopathological exam. Here we present findings indicating that GLCM and DWT methods can be successfully used in nephrology to detect subtle nuclear morphological alterations associated with mild tissue injury demonstrated in rodents by inducing a mild form of AKI through ischemia-reperfusion injury. Our results show that mild ischemic AKI is associated with the reduction of local textural homogeneity of PTC nuclei quantified by GLCM and the increase of nuclear structural heterogeneity indirectly assessed with DWT energy coefficients. This rodent model allowed us to show that mild ischemic AKI is associated with the significant reduction of textural homogeneity of PTC nuclei, indirectly assessed by GLCM indicators and DWT energy coefficients.
Collapse
Affiliation(s)
- Igor Pantic
- Faculty of Medicine, Department of Medical Physiology, Laboratory for Cellular Physiology, University of Belgrade, Visegradska 26/II, 11129, Belgrade, Serbia
- University of Haifa, 199 Abba Hushi Blvd, Mount Carmel, 3498838, Haifa, Israel
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Jelena Cumic
- Faculty of Medicine, University of Belgrade, University Clinical Center of Serbia, Dr. Koste Todorovica 8, 11129, Belgrade, Serbia
| | - Stefan Dugalic
- Faculty of Medicine, University of Belgrade, University Clinical Center of Serbia, Dr. Koste Todorovica 8, 11129, Belgrade, Serbia
| | - Georg A Petroianu
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Healthcare Engineering Innovation Center, Biomedical Engineering, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Center for Biotechnology, Khalifa University of Science and Technology, PO Box 127788, Abu Dhabi, UAE.
- Indiana Center for Biological Microscopy, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
13
|
Corridon PR. Enhancing the expression of a key mitochondrial enzyme at the inception of ischemia-reperfusion injury can boost recovery and halt the progression of acute kidney injury. Front Physiol 2023; 14:1024238. [PMID: 36846323 PMCID: PMC9945300 DOI: 10.3389/fphys.2023.1024238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Hydrodynamic fluid delivery has shown promise in influencing renal function in disease models. This technique provided pre-conditioned protection in acute injury models by upregulating the mitochondrial adaptation, while hydrodynamic injections of saline alone have improved microvascular perfusion. Accordingly, hydrodynamic mitochondrial gene delivery was applied to investigate the ability to halt progressive or persistent renal function impairment following episodes of ischemia-reperfusion injuries known to induce acute kidney injury (AKI). The rate of transgene expression was approximately 33% and 30% in rats with prerenal AKI that received treatments 1 (T1hr) and 24 (T24hr) hours after the injury was established, respectively. The resulting mitochondrial adaptation via exogenous IDH2 (isocitrate dehydrogenase 2 (NADP+) and mitochondrial) significantly blunted the effects of injury within 24 h of administration: decreased serum creatinine (≈60%, p < 0.05 at T1hr; ≈50%, p < 0.05 at T24hr) and blood urea nitrogen (≈50%, p < 0.05 at T1hr; ≈35%, p < 0.05 at T24hr) levels, and increased urine output (≈40%, p < 0.05 at T1hr; ≈26%, p < 0.05 at T24hr) and mitochondrial membrane potential, Δψm, (≈ by a factor of 13, p < 0.001 at T1hr; ≈ by a factor of 11, p < 0.001 at T24hr), despite elevated histology injury score (26%, p < 0.05 at T1hr; 47%, p < 0.05 at T24hr). Therefore, this study identifies an approach that can boost recovery and halt the progression of AKI at its inception.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
14
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Artificial neural networks in contemporary toxicology research. Chem Biol Interact 2023; 369:110269. [PMID: 36402212 DOI: 10.1016/j.cbi.2022.110269] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/04/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Artificial neural networks (ANNs) have a huge potential in toxicology research. They may be used to predict toxicity of various chemical compounds or classify the compounds based on their toxic effects. Today, numerous ANN models have been developed, some of which may be used to detect and possibly explain complex chemico-biological interactions. Fully connected multilayer perceptrons may in some circumstances have high classification accuracy and discriminatory power in separating damaged from intact cells after exposure to a toxic substance. Regularized and not fully connected convolutional neural networks can detect and identify discrete changes in patterns of two-dimensional data associated with toxicity. Bayesian neural networks with weight marginalization sometimes may have better prediction performance when compared to traditional approaches. With the further development of artificial intelligence, it is expected that ANNs will in the future become important parts of various accurate and affordable biosensors for detection of various toxic substances and evaluation of their biochemical properties. In this concise review article, we discuss the recent research focused on the scientific value of ANNs in evaluation and prediction of toxicity of chemical compounds.
Collapse
|
16
|
Corridon PR. Still finding ways to augment the existing management of acute and chronic kidney diseases with targeted gene and cell therapies: Opportunities and hurdles. Front Med (Lausanne) 2023; 10:1143028. [PMID: 36960337 PMCID: PMC10028138 DOI: 10.3389/fmed.2023.1143028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The rising global incidence of acute and chronic kidney diseases has increased the demand for renal replacement therapy. This issue, compounded with the limited availability of viable kidneys for transplantation, has propelled the search for alternative strategies to address the growing health and economic burdens associated with these conditions. In the search for such alternatives, significant efforts have been devised to augment the current and primarily supportive management of renal injury with novel regenerative strategies. For example, gene- and cell-based approaches that utilize recombinant peptides/proteins, gene, cell, organoid, and RNAi technologies have shown promising outcomes primarily in experimental models. Supporting research has also been conducted to improve our understanding of the critical aspects that facilitate the development of efficient gene- and cell-based techniques that the complex structure of the kidney has traditionally limited. This manuscript is intended to communicate efforts that have driven the development of such therapies by identifying the vectors and delivery routes needed to drive exogenous transgene incorporation that may support the treatment of acute and chronic kidney diseases.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biomedical Engineering, Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Peter R. Corridon,
| |
Collapse
|
17
|
Wang X, Chan V, Corridon PR. Acellular Tissue-Engineered Vascular Grafts from Polymers: Methods, Achievements, Characterization, and Challenges. Polymers (Basel) 2022; 14:4825. [PMID: 36432950 PMCID: PMC9695055 DOI: 10.3390/polym14224825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Extensive and permanent damage to the vasculature leading to different pathogenesis calls for developing innovative therapeutics, including drugs, medical devices, and cell therapies. Innovative strategies to engineer bioartificial/biomimetic vessels have been extensively exploited as an effective replacement for vessels that have seriously malfunctioned. However, further studies in polymer chemistry, additive manufacturing, and rapid prototyping are required to generate highly engineered vascular segments that can be effectively integrated into the existing vasculature of patients. One recently developed approach involves designing and fabricating acellular vessel equivalents from novel polymeric materials. This review aims to assess the design criteria, engineering factors, and innovative approaches for the fabrication and characterization of biomimetic macro- and micro-scale vessels. At the same time, the engineering correlation between the physical properties of the polymer and biological functionalities of multiscale acellular vascular segments are thoroughly elucidated. Moreover, several emerging characterization techniques for probing the mechanical properties of tissue-engineered vascular grafts are revealed. Finally, significant challenges to the clinical transformation of the highly promising engineered vessels derived from polymers are identified, and unique perspectives on future research directions are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Vincent Chan
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Peter R. Corridon
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
18
|
Corridon PR, Wang X, Shakeel A, Chan V. Digital Technologies: Advancing Individualized Treatments through Gene and Cell Therapies, Pharmacogenetics, and Disease Detection and Diagnostics. Biomedicines 2022; 10:biomedicines10102445. [PMID: 36289707 PMCID: PMC9599083 DOI: 10.3390/biomedicines10102445] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/25/2022] [Indexed: 11/28/2022] Open
Abstract
Digital technologies are shifting the paradigm of medicine in a way that will transform the healthcare industry. Conventional medical approaches focus on treating symptoms and ailments for large groups of people. These approaches can elicit differences in treatment responses and adverse reactions based on population variations, and are often incapable of treating the inherent pathophysiology of the medical conditions. Advances in genetics and engineering are improving healthcare via individualized treatments that include gene and cell therapies, pharmacogenetics, disease detection, and diagnostics. This paper highlights ways that artificial intelligence can help usher in an age of personalized medicine.
Collapse
Affiliation(s)
- Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Correspondence:
| | - Xinyu Wang
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Adeeba Shakeel
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
19
|
Corridon PR. Intravital microscopy datasets examining key nephron segments of transplanted decellularized kidneys. Sci Data 2022; 9:561. [PMID: 36088356 PMCID: PMC9464233 DOI: 10.1038/s41597-022-01685-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/07/2022] [Indexed: 12/28/2022] Open
Abstract
AbstractThis study contains intravital microscopy (IVM) data examining the microarchitecture of acellular kidney scaffolds. Acellular scaffolds are cell-free collagen-based matrices derived from native organs that can be used as templates for regenerative medicine applications. This data set contains in vivo assays that evaluate the effectiveness of decellularization and how these acellular nephron compartments perform in the post-transplantation environment. Qualitative and quantitative assessments of scaffold DNA concentrations, tissue fluorescence signals, and structural and functional integrities of decellularized tubular and peritubular capillary segments were acquired and compared to the native (non-transplanted) organ. Cohorts of 2–3-month-old male Sprague Dawley rats were used: non-transplanted (n = 4), transplanted day 0 (n = 4), transplanted day 1 (n = 4), transplanted day 2 (n = 4), and transplanted day 7 (n = 4). Micrographs and supporting measurements are provided to illustrate IVM processes used to perform this study and are publicly available in a data repository to assist scientific reproducibility and extend the use of this powerful imaging application to analyze other scaffold systems.
Measurements(s)
DNA quantification • tissue fluorescence • microvascular leakage • tubular and peritubular capillary integrity
Technology Type(s)
intravital microscopy • multiphoton microscopy • UV-visible spectroscopy
Sample Characterization(s)
rats • native and decellularized kidneys
Collapse
|
20
|
Wang X, Chan V, Corridon PR. Decellularized blood vessel development: Current state-of-the-art and future directions. Front Bioeng Biotechnol 2022; 10:951644. [PMID: 36003539 PMCID: PMC9394443 DOI: 10.3389/fbioe.2022.951644] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022] Open
Abstract
Vascular diseases contribute to intensive and irreversible damage, and current treatments include medications, rehabilitation, and surgical interventions. Often, these diseases require some form of vascular replacement therapy (VRT) to help patients overcome life-threatening conditions and traumatic injuries annually. Current VRTs rely on harvesting blood vessels from various regions of the body like the arms, legs, chest, and abdomen. However, these procedures also produce further complications like donor site morbidity. Such common comorbidities may lead to substantial pain, infections, decreased function, and additional reconstructive or cosmetic surgeries. Vascular tissue engineering technology promises to reduce or eliminate these issues, and the existing state-of-the-art approach is based on synthetic or natural polymer tubes aiming to mimic various types of blood vessel. Burgeoning decellularization techniques are considered as the most viable tissue engineering strategy to fill these gaps. This review discusses various approaches and the mechanisms behind decellularization techniques and outlines a simplified model for a replacement vascular unit. The current state-of-the-art method used to create decellularized vessel segments is identified. Also, perspectives on future directions to engineer small- (inner diameter >1 mm and <6 mm) to large-caliber (inner diameter >6 mm) vessel substitutes are presented.
Collapse
Affiliation(s)
- Xinyu Wang
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Vincent Chan
- Biomedical Engineering and Healthcare Engineering Innovation Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter R Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|