1
|
Artuyants A, Guo G, Flinterman M, Middleditch M, Jacob B, Lee K, Vella L, Su H, Wilson M, Eva L, Shelling AN, Blenkiron C. The tumour-derived extracellular vesicle proteome varies by endometrial cancer histology and is confounded by an obesogenic environment. Proteomics 2024; 24:e2300055. [PMID: 38644352 DOI: 10.1002/pmic.202300055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/23/2024]
Abstract
Endometrial cancer, the most common gynaecological cancer worldwide, is closely linked to obesity and metabolic diseases, particularly in younger women. New circulating biomarkers have the potential to improve diagnosis and treatment selections, which could significantly improve outcomes. Our approach focuses on extracellular vesicle (EV) biomarker discovery by directly profiling the proteome of EVs enriched from frozen biobanked endometrial tumours. We analysed nine tissue samples to compare three clinical subgroups-low BMI (Body Mass Index) Endometrioid, high BMI Endometrioid, and Serous (any BMI)-identifying proteins related to histological subtype, BMI, and shared secreted proteins. Using collagenase digestion and size exclusion chromatography, we successfully enriched generous quantities of EVs (range 204.8-1291.0 µg protein: 1.38 × 1011-1.10 × 1012 particles), characterised by their size (∼150 nm), expression of EV markers (CD63/81), and proposed endometrial cancer markers (L1CAM, ANXA2). Mass spectrometry-based proteomic profiling identified 2075 proteins present in at least one of the 18 samples. Compared to cell lysates, EVs were successfully depleted for mitochondrial and blood proteins and enriched for common EV markers and large secreted proteins. Further analysis highlighted significant differences in EV protein profiles between the high BMI subgroup and others, underlining the impact of comorbidities on the EV secretome. Interestingly, proteins differentially abundant in tissue subgroups were largely not also differential in matched EVs. This research identified secreted proteins known to be involved in endometrial cancer pathophysiology and proposed novel diagnostic biomarkers (EIF6, MUC16, PROM1, SLC26A2).
Collapse
Affiliation(s)
- Anastasiia Artuyants
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - George Guo
- Department of Physiology in the School of Medical Sciences, The University of Auckland, Auckland, New Zealand
- Mass Spectrometry Hub, The University of Auckland, Auckland, New Zealand
| | - Marcella Flinterman
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Martin Middleditch
- Technical Services, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Bincy Jacob
- Centre of eResearch, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Kate Lee
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Laura Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia
| | - Huaqi Su
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michelle Wilson
- Cancer and Blood, Auckland City Hospital, Auckland, New Zealand
- Department of Oncology, The University of Auckland, Auckland, New Zealand
| | - Lois Eva
- Department of Gynaecological Oncology, Auckland City Hospital, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Andrew N Shelling
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Centre for Cancer Research, The University of Auckland, Auckland, New Zealand
| | - Cherie Blenkiron
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Yuan Q, Sun Y, Yang F, Yan D, Shen M, Jin Z, Zhan L, Liu G, Yang L, Zhou Q, Yu Z, Zhou X, Yu Y, Xu Y, Wu Q, Luo J, Hu X, Zhang C. CircRNA DICAR as a novel endogenous regulator for diabetic cardiomyopathy and diabetic pyroptosis of cardiomyocytes. Signal Transduct Target Ther 2023; 8:99. [PMID: 36882410 PMCID: PMC9992392 DOI: 10.1038/s41392-022-01306-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/29/2022] [Accepted: 12/18/2022] [Indexed: 03/09/2023] Open
Abstract
In this study, we identified that a conserved circular RNA (circRNA) DICAR, which was downregulated in diabetic mouse hearts. DICAR had an inhibitory effect on diabetic cardiomyopathy (DCM), as the spontaneous cardiac dysfunction, cardiac cell hypertrophy, and cardiac fibrosis occurred in DICAR deficiency (DICAR+/-) mice, whereas the DCM was alleviated in DICAR-overexpressed DICARTg mice. At the cellular level, we found that overexpression of DICAR inhibited, but knockdown of DICAR enhanced the diabetic cardiomyocyte pyroptosis. At the molecular level, we identified that DICAR-VCP-Med12 degradation could be the underlying molecular mechanism in DICAR-mediated effects. The synthesized DICAR junction part (DICAR-JP) exhibited a similar effect to the entire DICAR. In addition, the expression of DICAR in circulating blood cells and plasma from diabetic patients was lower than that from health controls, which was consistent with the decreased DICAR expression in diabetic hearts. DICAR and the synthesized DICAR-JP may be drug candidates for DCM.
Collapse
Affiliation(s)
- Qiong Yuan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research and Institute of Metabolic Diseases, Southwest Medical University, Luzhou, 646000, China
| | - Yunwei Sun
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Fan Yang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Dan Yan
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Meihua Shen
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhigang Jin
- China Resource & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Lin Zhan
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Guangqi Liu
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Ling Yang
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Qianyi Zhou
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Zhijun Yu
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiangyu Zhou
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research and Institute of Metabolic Diseases, Southwest Medical University, Luzhou, 646000, China
| | - Yang Yu
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research and Institute of Metabolic Diseases, Southwest Medical University, Luzhou, 646000, China
| | - Yong Xu
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research and Institute of Metabolic Diseases, Southwest Medical University, Luzhou, 646000, China
| | - Qingming Wu
- College of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jianfang Luo
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong General Hospital, Guangzhou, China
| | - Xiamin Hu
- College of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 210000, China.
| | - Chunxiang Zhang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research and Institute of Metabolic Diseases, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
3
|
Lin X, Lin Z, Zhao X, Liu Z, Xu C, Yu B, Gao P, Wang Z, Ge J, Shen Y, Li L. Serum SELENBP1 and VCL Are Effective Biomarkers for Clinical and Forensic Diagnosis of Coronary Artery Spasm. Int J Mol Sci 2022; 23:13266. [PMID: 36362053 PMCID: PMC9655542 DOI: 10.3390/ijms232113266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Coronary artery spasm (CAS) plays an important role in the pathogenesis of many ischemic heart entities; however, there are no established diagnostic biomarkers for CAS in clinical and forensic settings. This present study aimed to identify such serum biomarkers by establishing a rabbit CAS provocation model and integrating quantitative serum proteomics, parallel reaction monitoring/mass spectrometry-based targeted proteomics, and partial least-squares discriminant analysis (PLS-DA). Our results suggested that SELENBP1 and VCL were potential candidate biomarkers for CAS. In independent clinical samples, SELENBP1 and VCL were validated to be significantly lower in serum but not blood cells from CAS patients, with the reasons for this possibly due to the decreased secretion from cardiomyocytes. The areas under the curve of the receiver operating characteristics (ROC) analysis were 0.9384 for SELENBP1 and 0.9180 for VCL when diagnosing CAS. The CAS risk decreased by 32.3% and 53.6% for every 10 unit increases in the serum SELENBP1 and VCL, respectively. In forensic samples, serum SELENBP1 alone diagnosed CAS-induced deaths at a sensitivity of 100.0% and specificity of 72.73%, and its combination with VCL yielded a diagnostic specificity of 100.0%, which was superior to the traditional biomarkers of cTnI and CK-MB. Therefore, serum SELENBP1 and VCL could be effective biomarkers for both the clinical and forensic diagnosis of CAS.
Collapse
Affiliation(s)
- Xinyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zijie Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xin Zhao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zheng Liu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Chenchao Xu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bokang Yu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Pan Gao
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhimin Wang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiwen Shen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Liliang Li
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
4
|
Pulmonary Involvement in SARS-CoV-2 Infection Estimates Myocardial Injury Risk. Medicina (B Aires) 2022; 58:medicina58101436. [PMID: 36295594 PMCID: PMC9610985 DOI: 10.3390/medicina58101436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022] Open
Abstract
Background and Objectives: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection represents a pathology with primary pulmonary involvement and multisystemic impact, including cardiovascular injuries. The present study aimed to assess the value of clinical, biochemical, and imaging factors in COVID-19 patients in determining the severity of myocardial involvement, and to create a model that can be used toevaluate myocardial injury risk based on clinical, biochemical and imaging factors. Materials and Methods: We performed an observational cohort study on 150 consecutive patients, evaluating their age, sex, hospitalization period, peripheral oxygen saturation (SpO2) in ambient air, systolic and diastolic blood pressure, heart rate, respiratory rate, biochemical markers of cardiac dysfunction (TnI, and NT-proBNP), inflammatory markers (C reactive protein (CRP), fibrinogen, serum ferritin, interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα)), D-dimers, lactate dehydrogenase (LDH), myoglobin and radio-imaging parameters. All patients underwent computerized tomography chest scan in the first two days following admission. Results: We observed elevated heart and respiratory rates, higher systolic blood pressure, and a lower diastolic blood pressure in the patients with cardiac injury; significant differences between groups were registered in TnI, NT-proBNP, LDH, CRP, and D-dimers. For the radiological parameters, we found proportional correlations with the myocardial injury for the severity of lung disease, number of pulmonary segments with alveolar consolidation, number of pulmonary lobes with pneumonia, crazy paving pattern, type of lung involvement, the extent of fibroatelectatic lesions and the mediastinal adenopathies. Conclusions: Myocardial injury occurred in 12% of patients in the study group. Ground glass opacities, interstitial interlobular septal thickening (crazy paving pattern), fibroatelectasic lesions and alveolar consolidations on CT scan were correlated with myocardial injury. Routine lung sectional imaging along with non-specific biomarkers (LDH, D-dimers, and CRP) can be further valuable in the characterization of the disease burden, thus impacting patient care.
Collapse
|
5
|
Datta A, Chen C, Gao YG, Sze SK. Quantitative Proteomics of Medium-Sized Extracellular Vesicle-Enriched Plasma of Lacunar Infarction for the Discovery of Prognostic Biomarkers. Int J Mol Sci 2022; 23:ijms231911670. [PMID: 36232970 PMCID: PMC9569577 DOI: 10.3390/ijms231911670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Lacunar infarction (LACI), a subtype of acute ischemic stroke, has poor mid- to long-term prognosis due to recurrent vascular events or incident dementia which is difficult to predict using existing clinical data. Herein, we aim to discover blood-based biomarkers for LACI as a complementary prognostic tool. Convalescent plasma was collected from forty-five patients following a non-disabling LACI along with seventeen matched control subjects. The patients were followed up prospectively for up to five years to record an occurrence of adverse outcome and grouped accordingly (i.e., LACI-no adverse outcome, LACI-recurrent vascular event, and LACI-cognitive decline without any recurrence of vascular events). Medium-sized extracellular vesicles (MEVs), isolated from the pooled plasma of four groups, were analyzed by stable isotope labeling and 2D-LC-MS/MS. Out of 573 (FDR < 1%) quantified proteins, 146 showed significant changes in at least one LACI group when compared to matched healthy control. A systems analysis revealed that major elements (~85%) of the MEV proteome are different from the proteome of small-sized extracellular vesicles obtained from the same pooled plasma. The altered MEV proteins in LACI patients are mostly reduced in abundance. The majority of the shortlisted MEV proteins are not linked to commonly studied biological processes such as coagulation, fibrinolysis, or inflammation. Instead, they are linked to oxygen-glucose deprivation, endo-lysosomal trafficking, glucose transport, and iron homeostasis. The dataset is provided as a web-based data resource to facilitate meta-analysis, data integration, and targeted large-scale validation.
Collapse
Affiliation(s)
- Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore 575018, Karnataka, India
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Correspondence: or (A.D.); (S.K.S.)
| | - Christopher Chen
- Memory, Aging and Cognition Centre, National University Health System, Singapore 119228, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Correspondence: or (A.D.); (S.K.S.)
| |
Collapse
|
6
|
Correlation between Carbonic Anhydrase Isozymes and the Evolution of Myocardial Infarction in Diabetic Patients. BIOLOGY 2022; 11:biology11081189. [PMID: 36009816 PMCID: PMC9404923 DOI: 10.3390/biology11081189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Heart disease in diabetics presents distinctive characteristics both anatomically and physiopathologically compared to non-diabetics. In people with diabetes, high blood pressure has a high incidence (approximately one-third of diabetic patients have high blood pressure) and is a risk factor for diabetic macro- and microvascular complications. The correlation of these parameters could represent early markers of the prognosis and evolution of diabetic patients with acute myocardial infarction and their routine determination could be included in the biological algorithm of acute myocardial infarction, but understanding of this aspect must be deepened in the future. The results showed that diabetic patients develop acute myocardial infarction more frequently, regardless of age. The level of the enzymes of myocardial necrosis was higher in diabetics compared to non-diabetics, and acute coronary syndrome occurs mainly in diabetics with inadequate metabolic balance. Our research may provide useful information for the medical community. Abstract (1) Background: Myocardial infarction was, until recently, recognized as a major coronary event, often fatal, with major implications for survivors. According to some authors, diabetes mellitus is an important atherogenic risk factor with cardiac determinations underlying the definition of the so-called “diabetic heart”. The present study aims to establish a correlation between the evolution of myocardial infarction in diabetic patients, by determining whether lactic acid levels, the activity of carbonic anhydrase isoenzymes, and the magnitude of ST-segment elevation are correlated with the subsequent evolution of myocardial infarction. (2) Methods: The study analyzed 2 groups of 30 patients each: group 1 consisted of diabetic patients with acute myocardial infarction, and group 2 consisted of non-diabetic patients with acute myocardial infarction. Patients were examined clinically and paraclinical, their heart markers, lactic acid, and the activity of carbonic anhydrase I and II isozymes were determined. All patients underwent electrocardiogram and echocardiography analyses. (3) Results: The results showed that diabetics develop acute myocardial infarction more frequently, regardless of how much time has passed since the diagnosis. The value of myocardial necrosis enzymes was higher in diabetics than in non-diabetics, and acute coronary syndrome occurs mainly in diabetics with poor metabolic balance. Lethality rates in non-diabetic patients with lactic acid values above normal are lower than in diabetics. (4) Conclusions: Lactic acid correlated with the activity of isozyme I of carbonic dioxide which could be early markers of the prognosis and evolution of diabetic patients with acute myocardial infarction.
Collapse
|
7
|
Li B, Fang Y, Lin J, Chen X, Li C, He M. Forensic psychiatric analysis of organic personality disorders after craniocerebral injury in Shanghai, China. Front Psychiatry 2022; 13:944888. [PMID: 35966473 PMCID: PMC9374033 DOI: 10.3389/fpsyt.2022.944888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To explore the incidence rate and the differences of clinical manifestations of organic personality disorders with varying degrees of craniocerebral trauma. MATERIALS AND METHODS According to the International Classification of Diseases-10, 1,027 subjects with craniocerebral trauma caused by traffic accidents were reviewed, the degrees of craniocerebral trauma were graded and those with personality disorder after craniocerebral trauma were diagnosed. The personality characteristics of all patients were evaluated by using the simplified Neuroticism Extraversion Openness Five-Factor Inventory (NEO-FFI). RESULTS The incidence rate of organic personality disorder after all kinds of craniocerebral trauma was 33.1%, while it was 38.7 and 44.2% in the patients after moderate and severe craniocerebral trauma, respectively, which was significantly higher than that in the patients after mild craniocerebral trauma (18.0%) (P < 0.05). Compared with the patients without personality disorder, the neuroticism, extraversion and agreeableness scores all showed significantly differences (P < 0.05) in the patients with personality disorder after craniocerebral trauma; especially the conscientiousness scores showed significant differences (P < 0.05) in the patients with personality disorder after moderate and severe craniocerebral trauma. The agreeableness and conscientiousness scores in the patients with personality disorder after moderate and severe craniocerebral trauma were significantly lower than that after mild craniocerebral trauma, and the patients with personality disorder after severe craniocerebral trauma had lower scores in extraversion than that after mild craniocerebral trauma. CONCLUSION The severity and area of craniocerebral trauma is closely related to the incidence rate of organic personality disorder, and it also affects the clinical manifestations of the latter, which provides a certain significance and help for forensic psychiatric appraisal.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai, China.,Shanghai Fenglin Forensic Center, Shanghai, China
| | - Youxin Fang
- Department of Neurology, Minhang Hospital, Fudan University, Shanghai, China
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xueyan Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chenhu Li
- Shanghai Xuhui Mental Health Center, Shanghai, China
| | - Meng He
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|