1
|
Tomaszewicz M, Stefańska K, Dębska-Zielkowska J, Zamkowska D, Piekarska K, Tymoniuk B, Adamski P, Jassem-Bobowicz J, Madej D, Trzonkowski P, Marek-Trzonkowska NM, Zieliński M. PD1+ T Regulatory Cells Are Not Sufficient to Protect from Gestational Hypertension. Int J Mol Sci 2025; 26:2860. [PMID: 40243452 PMCID: PMC11988647 DOI: 10.3390/ijms26072860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Tolerance to foetal tissues in pregnancy depends on the match between mother and child. CD4+Foxp3+ regulatory T cells (Tregs), which are involved in peripheral tolerance, may facilitate this effect. Previous findings have indicated that the number of missing KIR ligands (MSLs) between mother and child correlates with the risk of gestational hypertension (GH) and preeclampsia (PE). This study tested whether Tregs are involved in the pathogenesis of gestational disorders. In total, 57 pregnant women participated, including 39 with hypertensive disorders of pregnancy and 18 healthy controls. Treg phenotypes were evaluated using multicolour flow cytometry. Killer cell immunoglobulin-like receptors (KIRs) and their ligands were assessed using NGS and PCR-SSO typing. The correlation between the MSLs and Treg antigen expression was evaluated. The pregnancy-related hypertensive groups differ from the healthy control group in the frequency of particular Treg subsets. However, there was a correlation between an increasing number of MSLs and only one subset of Tregs, which was PD-1+ Tregs. Surprisingly, women suffering from GH or PE had a significantly higher percentage of PD-1+ Tregs than healthy pregnant women. The percentages of several other populations of Tregs, such as those expressing CCR4, CCR10, CD39, and CD73, were higher in healthy pregnant women than in those with GH or PE, but these numbers did not correlate with MSLs. The exhausted PD-1+ Treg cell subsets may play a crucial role in the pathogenesis of hypertensive disorders of pregnancy. It is also hypothesised that MSLrelated mechanisms trigger PD-1+ Treg expansion, but their increased number fails to provide protection against hypertensive conditions of pregnancy.
Collapse
Affiliation(s)
- Martyna Tomaszewicz
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.T.); (P.T.)
- PolTREG S.A., 80-298 Gdańsk, Poland
| | - Katarzyna Stefańska
- Department of Gynecology and Obstetrics, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Joanna Dębska-Zielkowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.T.); (P.T.)
| | | | - Karolina Piekarska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.T.); (P.T.)
| | - Bogusław Tymoniuk
- Department of Immunology and Allergy, Medical University of Lódź, 92-213 Lódź, Poland
| | - Przemysław Adamski
- Department of Gynecology and Obstetrics, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Joanna Jassem-Bobowicz
- Division of Neonatology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Dorota Madej
- Department of Gynecology and Obstetrics, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Piotr Trzonkowski
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.T.); (P.T.)
- PolTREG S.A., 80-298 Gdańsk, Poland
| | - Natalia Maria Marek-Trzonkowska
- International Centre for Cancer Vaccine Science Cancer Immunology Group, University of Gdańsk, 80-822 Gdańsk, Poland
- Laboratory of Immunoregulation and Cellular Therapies, Department of Family Medicine, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Maciej Zieliński
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.T.); (P.T.)
- PolTREG S.A., 80-298 Gdańsk, Poland
| |
Collapse
|
2
|
Nunes PR, Oliveira PF, Rebelo I, Sandrim VC, Alves MG. Relevance of real-time analyzers to determine mitochondrial quality in endothelial cells and oxidative stress in preeclampsia. Vascul Pharmacol 2024; 155:107372. [PMID: 38583694 DOI: 10.1016/j.vph.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Oxidative stress and mitochondrial dysfunction are important elements for the pathophysiology of preeclampsia (PE), a multisystemic hypertensive syndrome of pregnancy, characterized by endothelial dysfunction and responsible for a large part of maternal and fetal morbidity and mortality worldwide. Researchers have dedicated their efforts to unraveling the intricate ways in which certain molecules influence both energy metabolism and oxidative stress. Exploring established methodologies from existing literature, shows that these investigations predominantly focus on the placenta, identified as a pivotal source that drives the changes observed in the disease. In this review, we discuss the role of oxidative stress in pathophysiology of PE, as well as metabolic/endothelial dysfunction. We further discuss the use of seahorse analyzers to study real-time bioenergetics of endothelial cells. Although the benefits are clear, few studies have presented results using this method to assess mitochondrial metabolism in these cells. We performed a search on MEDLINE/PubMed using the terms "Seahorse assay and endothelial dysfunction in HUVEC" as well as "Seahorse assay and preeclampsia". From our research, we selected 16 original peer-review papers for discussion. Notably, the first search retrieved studies involving Human Umbilical Vein Endothelial Cells (HUVECs) but none investigating bioenergetics in PE while the second search retrieved studies exploring the technique in PE but none of the studies used HUVECs. Additional studies are required to investigate real-time mitochondrial bioenergetics in PE. Clearly, there is a need for more complete studies to examine the nuances of mitochondrial bioenergetics, focusing on the contributions of HUVECs in the context of PE.
Collapse
Affiliation(s)
- Priscila R Nunes
- Department of Pharmacology and Biophysics, Institute of Biosciences, Sao Paulo State University (Unesp), 18618-689 Sao Paulo, Brazil
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB- Institute for Health and Bioeconomy, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal
| | - Valeria C Sandrim
- Department of Pharmacology and Biophysics, Institute of Biosciences, Sao Paulo State University (Unesp), 18618-689 Sao Paulo, Brazil
| | - Marco G Alves
- iBiMED - Institute of Biomedicine and Department of Medical Sciences University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Kobayashi H, Yoshimoto C, Matsubara S, Shigetomi H, Imanaka S. An integral role of mitochondrial function in the pathophysiology of preeclampsia. Mol Biol Rep 2024; 51:330. [PMID: 38393449 DOI: 10.1007/s11033-024-09285-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Preeclampsia (PE) is associated with high maternal and perinatal morbidity and mortality. The development of effective treatment strategies remains a major challenge due to the limited understanding of the pathogenesis. In this review, we summarize the current understanding of PE research, focusing on the molecular basis of mitochondrial function in normal and PE placentas, and discuss perspectives on future research directions. Mitochondria integrate numerous physiological processes such as energy production, cellular redox homeostasis, mitochondrial dynamics, and mitophagy, a selective autophagic clearance of damaged or dysfunctional mitochondria. Normal placental mitochondria have evolved innovative survival strategies to cope with uncertain environments (e.g., hypoxia and nutrient starvation). Cytotrophoblasts, extravillous trophoblast cells, and syncytiotrophoblasts all have distinct mitochondrial morphology and function. Recent advances in molecular studies on the spatial and temporal changes in normal mitochondrial function are providing valuable insight into PE pathogenesis. In PE placentas, hypoxia-mediated mitochondrial fission may induce activation of mitophagy machinery, leading to increased mitochondrial fragmentation and placental tissue damage over time. Repair mechanisms in mitochondrial function restore placental function, but disruption of compensatory mechanisms can induce apoptotic death of trophoblast cells. Additionally, molecular markers associated with repair or compensatory mechanisms that may influence the development and progression of PE are beginning to be identified. However, contradictory results have been obtained regarding some of the molecules that control mitochondrial biogenesis, dynamics, and mitophagy in PE placentas. In conclusion, understanding how the mitochondrial morphology and function influence cell fate decisions of trophoblast cells is an important issue in normal as well as pathological placentation biology. Research focusing on mitochondrial function will become increasingly important for elucidating the pathogenesis and effective treatment strategies of PE.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara, 634-0813, Japan.
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan.
| | - Chiharu Yoshimoto
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Obstetrics and Gynecology, Nara Prefecture General Medical Center, 2-897-5 Shichijyonishi-machi, Nara, 630-8581, Japan
| | - Sho Matsubara
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Medicine, Kei Oushin Clinic, 5-2-6, Naruo-cho, Nishinomiya, 663-8184, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
- Department of Gynecology and Reproductive Medicine, Aska Ladies Clinic, 3-3-17 Kitatomigaoka-cho, Nara, 634- 0001, Japan
| | - Shogo Imanaka
- Department of Gynecology and Reproductive Medicine, Ms.Clinic MayOne, 871-1 Shijo-cho, Kashihara, 634-0813, Japan
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, 634-8522, Japan
| |
Collapse
|
4
|
Huang P, Song Y, Yang Y, Bai F, Li N, Liu D, Li C, Li X, Gou W, Zong L. Identification and verification of diagnostic biomarkers based on mitochondria-related genes related to immune microenvironment for preeclampsia using machine learning algorithms. Front Immunol 2024; 14:1304165. [PMID: 38259465 PMCID: PMC10800455 DOI: 10.3389/fimmu.2023.1304165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Preeclampsia is one of the leading causes of maternal and fetal morbidity and mortality worldwide. Preeclampsia is linked to mitochondrial dysfunction as a contributing factor in its progression. This study aimed to develop a novel diagnostic model based on mitochondria-related genes(MRGs) for preeclampsia using machine learning and further investigate the association of the MRGs and immune infiltration landscape in preeclampsia. In this research, we analyzed GSE75010 database and screened 552 DE-MRGs between preeclampsia samples and normal samples. Enrichment assays indicated that 552 DE-MRGs were mainly related to energy metabolism pathway and several different diseases. Then, we performed LASSO and SVM-RFE and identified three critical diagnostic genes for preeclampsia, including CPOX, DEGS1 and SH3BP5. In addition, we developed a novel diagnostic model using the above three genes and its diagnostic value was confirmed in GSE44711, GSE75010 datasets and our cohorts. Importantly, the results of RT-PCR confirmed the expressions of CPOX, DEGS1 and SH3BP5 were distinctly increased in preeclampsia samples compared with normal samples. The results of the CIBERSORT algorithm revealed a striking dissimilarity between the immune cells found in preeclampsia samples and those found in normal samples. In addition, we found that the levels of SH3BP5 were closely associated with several immune cells, highlighting its potential involved in immune microenvironment of preeclampsia. Overall, this study has provided a novel diagnostic model and diagnostic genes for preeclampsia while also revealing the association between MRGs and immune infiltration. These findings offer valuable insights for further research and treatment of preeclampsia.
Collapse
Affiliation(s)
- Pu Huang
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Yuchun Song
- Department of Gynecology and Obstetrics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Yu Yang
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Feiyue Bai
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Na Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Dan Liu
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Chunfang Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Xuelan Li
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Wenli Gou
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| | - Lu Zong
- Department of Obstetrics & Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xian, Shaanxi, China
| |
Collapse
|
5
|
Li A, Zhao M, Yang Z, Fang Z, Qi W, Zhang C, Zhou M, Guo J, Li S, Wang X, Zhang M. 6-Gingerol alleviates placental injury in preeclampsia by inhibiting oxidative stress via BNIP3/LC3 signaling-mediated trophoblast mitophagy. Front Pharmacol 2023; 14:1243734. [PMID: 37900164 PMCID: PMC10611501 DOI: 10.3389/fphar.2023.1243734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Background and aims: Preeclampsia (PE) is the leading cause of maternal and fetal morbidity and mortality worldwide. Apoptosis of trophoblast cells induced by oxidative stress is a principal reason of placental injury in PE. 6-Gingerol, an antioxidant from ginger, plays an important role in many disease models, but its effect on obstetric diseases has not been elucidated. In this study, we investigated the protective effect of 6-gingerol against placental injury. Methods: In vitro hypoxia/reoxygenation (H/R) model of HTR8/Svneo cells and preeclamptic mice model were established to simulate PE. The effects of 6-Gingerol on PE were evaluated by morphological detection, biochemical analysis, and Western blot. Results: We found that H/R treatment induced cell apoptosis, increased the production of reactive oxygen species, malondialdehyde and lactate dehydrogenase, and decreased superoxide dismutase in trophoblast. In addition, the polarization of mitochondrial membrane potential and the cellular calcium flux were also destroyed under H/R condition, which also activated BCL2-interacting protein 3 (BNIP3) and provoked excessive mitophagy. Importantly, 6-Gingerol reversed these corrosive effects. Furthermore, the placenta damage in PE-like mouse caused by the cell apoptosis, oxidative stress and mitophagy was mitigated by 6-Gingerol. Conclusion: These findings suggest that 6-Gingerol exerts a protective effect against placental injury in PE by reducing oxidative stress and inhibiting excessive mitophagy caused by mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anna Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Man Zhao
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zexin Yang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Weiyi Qi
- Department of Clinical Medicine, Shandong First Medical University, Jinan, China
| | - Changqing Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Meijuan Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Junjun Guo
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Shuxian Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xietong Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
6
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|