1
|
Li S, Niu W, Wang C, Zhao J, Zhang N, Yin Y, Jia M, Cui L. Exploring Anthracycline-Induced Cardiotoxicity from the Perspective of Protein Quality Control. Rev Cardiovasc Med 2024; 25:213. [PMID: 39076322 PMCID: PMC11270093 DOI: 10.31083/j.rcm2506213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/26/2023] [Accepted: 01/15/2024] [Indexed: 07/31/2024] Open
Abstract
Anthracyclines are effective anticancer drugs; however, their use is restricted because of their dose-dependent, time-dependent and irreversible myocardial toxicity. The mechanism of anthracycline cardiotoxicity has been widely studied but remains unclear. Protein quality control is crucial to the stability of the intracellular environment and, ultimately, to the heart because cardiomyocytes are terminally differentiated. Two evolutionarily conserved mechanisms, autophagy, and the ubiquitin-proteasome system, synergistically degrade misfolded proteins and remove defective organelles. Recent studies demonstrated the importance of these mechanisms. Further studies will reveal the detailed metabolic pathway and metabolic control of the protein quality control mechanism integrated into anthracycline-induced cardiotoxicity. This review provides theoretical support for clinicians in the application and management of anthracyclines.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Laboratory Medicine, Peking University Third Hospital, 100191 Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, 100191 Beijing, China
- Department of Clinical Laboratory, Peking University People’s Hospital, 100041 Beijing, China
| | - Weihua Niu
- Department of Clinical Laboratory, Peking University People’s Hospital, 100041 Beijing, China
| | - Chunyan Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, 100041 Beijing, China
| | - Jie Zhao
- Department of Clinical Laboratory, Peking University People’s Hospital, 100041 Beijing, China
| | - Na Zhang
- Department of Clinical Laboratory, Peking University People’s Hospital, 100041 Beijing, China
| | - Yue Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, 100041 Beijing, China
| | - Mei Jia
- Department of Clinical Laboratory, Peking University People’s Hospital, 100041 Beijing, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, 100191 Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, 100191 Beijing, China
| |
Collapse
|
2
|
Zhan X, Yang Y, Li Q, He F. The role of deubiquitinases in cardiac disease. Expert Rev Mol Med 2024; 26:e3. [PMID: 38525836 PMCID: PMC11062144 DOI: 10.1017/erm.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024]
Abstract
Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaona Zhan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qing Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
3
|
Lian N, Tong J, Zhu W, Meng Q, Jiang M, Bian M, Li Y. Ligustrazine and liguzinediol protect against doxorubicin-induced cardiomyocytes injury by inhibiting mitochondrial apoptosis and autophagy. Clin Exp Pharmacol Physiol 2023; 50:867-877. [PMID: 37574718 DOI: 10.1111/1440-1681.13811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Preventing or treating heart failure (HF) by blocking cardiomyocyte apoptosis is an effective strategy that improves survival and reduces ventricular remodelling and dysfunction in the chronic stage. Autophagy is a mechanism that degrades intracellular components and compensates for energy deficiency, which is commonly observed in cardiomyocytes of failed hearts. Cardiomyocytes activated by doxorubicin (DOX) exhibit strong autophagy. This study aims to investigate the potential protective effect of ligustrazine and its derivative liguzinediol on regulating DOX-induced cardiomyocyte apoptosis and explore the use of the embryonic rat heart-derived myoblast cell line H9C2 for identifying novel treatments for HF. The results indicated that it has been demonstrated to reverse myocardial infarction remodelling in failed hearts by promoting autophagy in salvaged cardiomyocytes and anti-apoptosis of cardiomyocytes in granulation tissue. Our study suggests that ligustrazine and liguzinediol can be a promising agents and autophagy is potential pathway in the management of HF.
Collapse
Affiliation(s)
- Naqi Lian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Tong
- Xi'an International Medical Center Hospital, Xi'an, China
| | - Weijie Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miao Jiang
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mianli Bian
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
4
|
Zhang H, Merkus D, Zhang P, Zhang H, Wang Y, Du L, Kottu L. Predicting protective gene biomarker of acute coronary syndrome by the circRNA-associated competitive endogenous RNA regulatory network. Front Genet 2022; 13:1030510. [PMID: 36339005 PMCID: PMC9627163 DOI: 10.3389/fgene.2022.1030510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/30/2022] [Indexed: 10/26/2023] Open
Abstract
Background: The mortality and disability rates of acute coronary syndrome (ACS) are quite high. Circular RNA (circRNA) is a competitive endogenous RNA (ceRNA) that plays an important role in the pathophysiology of ACS. Our goal is to screen circRNA-associated ceRNA networks for biomarker genes that are conducive to the diagnosis or exclusion of ACS, and better understand the pathology of the disease through the analysis of immune cells. Materials and methods: RNA expression profiles for circRNAs (GSE197137), miRNAs (GSE31568), and mRNAs (GSE95368) were obtained from the GEO database, and differentially expressed RNAs (DEcircRNAs, DEmiRNAs, and DEmRNAs) were identified. The circRNA-miRNA and miRNA-mRNA regulatory links were retrieved from the CircInteractome database and TargetScan databases, respectively. As a final step, a regulatory network has been designed for ceRNA. On the basis of the ceRNA network, hub mRNAs were verified by quantitative RT-PCR. Hub genes were validated using a third independent mRNA database GSE60993, and ROC curves were used to evaluate their diagnostic values. The correlation between hub genes and immune cells associated with ACS was then analyzed using single sample gene set enrichment analysis (ssGSEA). Results: A total of 17 DEcircRNAs, 229 DEmiRNAs, and 27 DEmRNAs were found, as well as 52 circRNA-miRNA pairings and 10 miRNA-mRNA pairings predicted. The ceRNA regulatory network (circRNA-miRNA-mRNA) was constructed, which included 2 circRNA (hsa_circ_0082319 and hsa_circ_0005654), 4 miRNA (hsa-miR-583, hsa-miR-661, hsa-miR-671-5p, hsa-miR-578), and 5 mRNA (XPNPEP1, UCHL1, DBNL, GPC6, and RAD51). The qRT-PCR analysis result showed that the XPNPEP1, UCHL1, GPC6 and RAD51 genes had a significantly decreased expression in ACS patients. Based on ROC curve analysis, we found that XPNPEP1 has important significance in preventing ACS occurrence and excluding ACS diagnosis. ACS immune infiltration analysis revealed significant correlations between the other 3 hub genes (UCHL1, GPC6, RAD51) and the immune cells (Eosinophils, T folliculars, Type 2 T helper cells, and Imumature dendritic cells). Conclusion: Our study constructed a circRNA-related ceRNA network in ACS. The XPNPEP1 gene could be a protective gene biomarker for ACS. The UCHL1, GPC6 and RAD51 genes were significantly correlated with immune cells in ACS.
Collapse
Affiliation(s)
- Hengliang Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University München, Munich, Germany
| | - Daphne Merkus
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, Ludwig-Maximilians-University München, Munich, Germany
- Department of Experimental Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Pei Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Huifeng Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yanyu Wang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Laijing Du
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lakshme Kottu
- Department of Experimental Cardiology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
5
|
Huber CC, Wang X, Wang H. Impact of Cardiovascular Diseases on Ischemic Stroke Outcomes. J Integr Neurosci 2022; 21:138. [PMID: 36137958 PMCID: PMC9721101 DOI: 10.31083/j.jin2105138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022] Open
Abstract
Stroke induces complex pathological cascades in the affected brain area, leading to brain injury and functional disability. To fight against cerebral ischemia/reperfusion-induced neuronal death, numerous neuroprotective strategies and reagents have been studied. However, translation of these neuroprotective drugs to clinical trials has been unsuccessful. To date, the tissue plasminogen activator is still the only FDA-approved drug for treating ischemic stroke. Thus, it is obligatory to identify and validate additional therapeutic strategies for stroke. A stroke rarely occurs without any other pathophysiological condition; but instead, it often has multi-morbidity conditions, one of which is cardiac disease. Indeed, up to half of the stroke cases are associated with cardiac and large artery diseases. As an adequate blood supply is essential for the brain to maintain its normal function, any pathophysiological alterations in the heart are frequently implicated in stroke outcomes. In this review, we summarize some of the cardiovascular factors that influence stroke outcomes and propose that considering these factors in designing stroke therapies should enhance success in clinical trials. We also highlight the recent advances regarding the potential effect of protein aggregates in a peripheral organ, such as in the heart, on ischemic stroke-caused brain injury and functional recovery. Including these and other comorbidity factors in the future therapeutic strategy designs should facilitate translational success toward developing effective combinational therapies for the disorder.
Collapse
Affiliation(s)
- Christa C. Huber
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Hongmin Wang
- Division of Basic Biomedical Sciences and Center for Brain and Behavior Research, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|